• Title/Summary/Keyword: Road environment

Search Result 1,783, Processing Time 0.029 seconds

A Study on Driver Perception-Reaction Time in High-Speed Driving Situations (고속주행상황의 운전자 인지·반응시간에 관한 연구)

  • Choi, Jaisung;Jeong, Seungwon;Kim, Jeongmin;Kim, Taeho;Shin, Joonsoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-119
    • /
    • 2017
  • PURPOSES : The desire of drivers to increase their driving speeds is increasing in response to the technological advancements in vehicles and roads. Therefore, studies are being conducted to increase the maximum design speed in Korea to 140 km/h. The stopping sight distance (SSD) is an important criterion for acquiring sustained road safety in road design. Moreover, although the perception-reaction time (PRT) is a critical variable in the calculation of the SSD, there are not many current studies on PRT. Prior to increasing the design speed, it is necessary to confirm whether the domestic PRT standard (2.5 s) is applicable to high-speed driving. Thus, in this study, we have investigated the influence of high-speed driving on PRT. METHODS : A driving simulator was used to record the PRT of drivers. A virtual driving map was composed using UC-Win/Road software. Experiments were carried out at speeds of 100, 120, and 140 km/h while assuming the following three driving scenarios according to driver expectation: Expected, Unexpected, and Surprised. Lastly, we analyzed the gaze position of the driver as they drove in the simulated environment using Smarteye. RESULTS : Driving simulator experimental results showed that the PRT of drivers decreased as driving speed increased from 100 km/h to 140 km/h. Furthermore, the gaze position analysis results demonstrated that the decrease in PRT of drivers as the driving speed increased was directly related to their level of concentration. CONCLUSIONS : In the experimental results, 85% of drivers responded within 2.0 s at a driving speed of 140 km/h. Thus, the results obtained here verify that the current domestic standard of 2.5 s can be applied in the highways designated to have 140 km/h maximum speed.

Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM (NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구)

  • Chung, Jin-Eun;Ahn, Jueng-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4729-4735
    • /
    • 2014
  • To protect the environment, the regulation of emissions from off-road engines which are relatively neglected, is being reinforced. This paper deals with the robust design of off-road diesel engines considering the emission characteristics. Measurements of the NOx and PM levels based on the DOE were carried out. The injector hole number, injection timing and EGR rate were selected as the control factors. The orthogonal arrays table $L_9(3^3)$ was made from 2 or 3 levels for each factor and measurements of emissions were accomplished based on the table. The small-the-better SN ratio according to the Taguchi method was evaluated. The ANOVA (analysis of variance) for the SN ratio was conducted. The injection timing on the NOx emissions and the EGR rate on the PM have the largest effect on the low-load operation condition. The confidence levels of the control factors were more than 90%.

Road Lane and Vehicle Distance Recognition using Real-time Analysis of Camera Images (카메라 영상의 실시간 분석에 의한 차선 및 차간 인식)

  • Kang, Moon-Seol;Kim, Yu-Sin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2665-2674
    • /
    • 2012
  • This paper propose the method to recognize the lanes and distance between cars in real-time which detects dangerous situations and helps safe driving in the actual road environment. First of all, it extracts the area of interest corresponding to roads and cars from the road image photographed by using the forward-looking camera. Through the hough transform for the area of interest, this study detects linear components and also selects the lane and conducts filtering by calculating probability. And through the shadow threshold analysis of the cars in front within the area of interest, it extracts the objects of cars in front and calculates the distance from cars in front. According to the result of applying the suggested technology to recognize the lane and distance between cars to the road situation for testing, it showed over 95% recognition rate; thus, it has been proved that it can respond to safe driving.

Development of a Prototype Equipment for Road Stripe Removing Using High Pressure Water-Jet (워터젯을 이용한 노면표시 제거장비의 프로토타입 개발)

  • Kim, Kyoon-Tai;Han, Jae-Goo;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.5
    • /
    • pp.149-158
    • /
    • 2006
  • Current removing process is labor intensive and time consuming, employing a conventional grinding type manual machine. This manual tasks trigger various dangers such as unexpected traffic accidents or explosions of propane gas used for finalizing removing process, leading to health damage and environment pollution by dusts and noxious gases. Accordingly, it is necessity for the development of new alternative equipment. In this paper, we have developed a prototype equipment for road stripe removing made up with a high-pressure water-jet system as a mobile type system. The following shows the results. First, an analysis of the current road stripe removal process showed that it can be divided into a) preparation, b) removal and c) ground finishing. It also showed that the b) removal process requires equipment which can cover the whole process. Second, the study compared between the productivity of the developed equipment and conventional methods, and it obtained 280% productivity improvement compared to the conventional equipment.

Comparison of Commuters' PM10 Exposure Using Different Transportation Modes of Bus and Bicycle (버스와 자전거를 이용한 통근 수단에 따른 PM10 노출량의 비교)

  • Kim, Won;Kim, Sung-Yeon;Lee, Ji-Yeon;Kim, Seong-Keun;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.447-453
    • /
    • 2009
  • Cycling has been lately recommended as an alternative commuting mode because it is believed to be good for health and the environment. However, the exposure to environmental pollutants, such as fine particulates, could be a potential problem for cycling in urban environments. In this study, we compared commuters' $PM_{10}$ exposure using the different transportation modes of bicycle and bus. When a bicycle was used as a commuting mode, the additional $PM_{10}$ exposure due to transportation was about 3.5 times higher than that when using a bus. The difference of additional $PM_{10}$ exposures by cycling and bus was statistically significant (p<0.01). The $PM_{10}$ exposure during cycling was significantly correlated with atmospheric $PM_{10}$ concentration (r=0.98, p<0.01) and its correlation coefficient was higher than that of bus (r=0.55, p<0.05). The results of this study demonstrated that the main reasons of higher $PM_{10}$ exposure when using the bicycle as the mode of transport were its vicinity to road traffic and routes that were unavoidably close to road traffic. Bicycle commuting along the road side may not be good for health. Exclusive bicycle lanes away from road traffic are recommended.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators (자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화)

  • Hong, Su-Jeong;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.

A Study on the Improvement Plan of Speed Limit and Road Service Quality according to the Implementation of Safety Speed 5030 Policy (안전속도 5030 시행에 따른 제한속도 및 도로서비스 질의 개선방안에 관한 연구)

  • Lee, Hwan Jin;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.405-416
    • /
    • 2021
  • The safety speed 5030 policy, which is currently being implemented nationwide, tends to increase citizens' dissatisfaction due to reduced mobility and inconvenience. In order to successfully promote the Safety Speed 5030 policy, it is important to collect various opinions of citizens who use roads by deviating from quantitative policy evaluation criteria such as traffic accidents and traffic speed. Therefore, in this study, citizens who use roads were classified into a driver group and a non-driver group, and civic consciousness analysis such as adequacy evaluation of speed limit, satisfaction evaluation of road service quality (MDS), and importance-satisfaction analysis (IPA) was conducted. As a result of the analysis of civic consciousness, in particular, satisfaction with mobility, economy, and environment was low. Accordingly, it was intended to promote the successful implementation of the Safety Speed 5030 policy by presenting measures to improve the speed limit and quality of road service for roads with low satisfaction.

A Study on the Improvement of Evaluation Methods for Roadside Slope Revegetation - Focus on the Cut-soil Slope - (도로비탈면 녹화공사 평가방법의 개선 방안 연구 - 절토부 토사를 중심으로 -)

  • Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.187-200
    • /
    • 2020
  • Despite the eco-friendly route plan, road slopes were collapsed due to road construction, resulting in human and property damage. To solve this problem, the Ministry of Land, Transport and Maritime Affairs established guidelines in 2009 to conduct a test-bed for slope recording considering the conditions of the site and the ecological environment, and divided them into recording quality and economic evaluation. The following results were obtained by analyzing 183 construction methods of cut-soil sections at 60 sites from 2012 to 2018 for road slope afforestation research. Straw net+seedspray, vegetation media spray method 1T, 3T were used the most, and vegetation media spray method 3T(patent) was excellent in quality, and straw net+seedspray was excellent in economics. As a result of analyzing the market unit price and the construction unit price, vegetation media spray method submitted the construction unit price at up to 60% lower than the market unit price. As a result of the analysis of the key factors of the greening method evaluation, the economic assessment had the greatest influence on all evaluation items. Problems in the evaluation method of revegetation were first identified as problems in the allocation of points and secondly as problems in the evaluation criteria. As for the improvement of the economic assessment criteria, the method was proposed to evaluate the same method based on market unit price when the same method was constructed, and not to conduct an economic assessment if there was a difference in market unit price between methods, or to add weight to the scores. Based on the monitoring data of 60 road slopes, this study drew up problems and improvement measures. However, with regard to scoring, research on appropriate scoring is needed by examining the current status.

Study on Map Building Performance Using OSM in Virtual Environment for Application to Self-Driving Vehicle (가상환경에서 OSM을 활용한 자율주행 실증 맵 성능 연구)

  • MinHyeok Baek;Jinu Pahk;JungSeok Shim;SeongJeong Park;YongSeob Lim;GyeungHo Choi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2023
  • In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.