• Title/Summary/Keyword: Road design

Search Result 2,122, Processing Time 0.033 seconds

Area Identification for Road Design (도로 설계 지역 구분)

  • Kim, Yong Seok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.181-189
    • /
    • 2014
  • PURPOSES : Ambiguous decision on whether rural or urban area for road design can increase the construction cost and restrict the land use of surrounding area. However, administrative classification on rural and urban area is not directly related to road design because of this classification is not based on the engineering viewpoint, so method which can explain the road design context is required. METHODS : Method which enables to identify the area for road design is suggested based on the deceleration expected to be experienced by drivers who use the road section concerned. Deceleration rate corresponding to the area such as rural or urban suggested in Road Design Guideline is used as the criteria to identify the area by comparing this value with the estimated deceleration rate at the road section concerned. Speed profile method is utilized to derive the deceleration rate, and speed estimation way for reflecting both road geometry and intersection is suggested using stopping sight distance concept. RESULTS : The procedure of the method application is suggested, and the design example utilizing the method is provided. CONCLUSIONS : The method is expected to be used to identify the area for road design with engineering viewpoint, and design consistency among the roads with similar driving environment can be made.

Study of Optimized Reflector Design for Road Light Using Ray-Tracing Method (광선추적법을 사용한 가로등 반사판의 최적설계에 관한 연구)

  • Choi, Dae-Seub;Han, Jeong-Min;Shim, Yong-Sik;Jeong, Chan-Oong;Oh, Seon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.347-350
    • /
    • 2009
  • In this study, it was studied about the improved road light design for drivers and pedestrians using forward or reverse ray-tracing method. Many of conventional road lights are not suitable for drivers and pedestrians because it has some serious problems such as glare effect or randomicity of illuminated areas. It was oriented from customary design method which was pointed at simple target such as luminance or electrical power. But it was not truth any more that the high luminance or electrical power consumption mean more bright and good road light. We studied ray-tracing method for road light reflector design to get the several goals. It means that good road light has easy for drivers and pedestrians eyes and illuminating objects on the road clearly. So, we set the design targets such as uniformity on the road area per one road light, shading angles and continuous luminance uniformity on the long distance road. We designed ideal road light conditions using ray-tracing method. We set the height of drivers and pedestrians eyes and calculated design guideline to make above design targets. Then we designed road light reflector using reverse ray-tracing method. And we achieved same luminance on the road almost half power consumption because we reduced loss of light. We achieved ideal design guide as 75 degrees of shading angles and 0.5 of luminance uniformity on the road area. It is superior than conventional road light ability such as 0.35 of luminance uniformity of 400 watts power consumption lamp. Finally, we suggested reflector design for 250 watts power consumption CDM Iight source.

Application of Simulation for Road Design Evaluation (도로설계 평가를 위한 3차원 시뮬레이션 적용)

  • Kim, Ga-Ya;Jung, Beam-Seok;Kim, Nam-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.121-131
    • /
    • 2008
  • Two dimensional road design is connoting danger factor because different point between design standard and driver's reaction. Consequently two dimensional road design is difficult to recognize problem that happen beforehand when before construction. Therefore three dimensional road design that can grasp problem after completion is required. In this study, three dimensional road was designed to evaluate road that is designed. Road designed by Inroad that is road design program. DTM is created using digital map and elevation data. Three dimensional road was designed by integrated DTM of road and topography. Road design evaluation was performed in three dimension. Driving simulation and sight distance assessment were carried out to estimate stability of alignment. Shadow simulation was executed on icy road section for bad section of icy road surface. As a result of evaluation, this study could confirm shape of road after completion. And sight distance could be calculated and visually confirmed. Also, icy road sections were extracted through shadow simulation.

  • PDF

Road Safety Assessment by Using Integrated Evaluation Methods of Road Design Consistency (도로선형 설계일관성 통합평가방법론을 활용한 안전성 평가)

  • Ko, Chun-Soo;Lee, Jong-Hak;Ku, Ji-Sun;Noh, Kwan-Sub
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • PURPOSES: Road Design Consistency Evaluation can guarantee road alignments with safety factors, however it can be hard work to deal with general car accident factors in only this evaluation index. Ideal Road Design Consistency Evaluation is show the mutual balance of road alignment and human factors with a variety of factors for road safety. METHODS: This study carried out overall road safety evaluations which are methods of running speeding consistency and car platoon safety analysis (driver's behaviors factors) as well. RESULTS: Out of 13 sections in a experimental road layout, safety factors of 8 sections showed 'Good' or 'Fair' status. However, 'Poor' results were found out in 5 sections. Particularly, it showed the different outcomes among the 4 evaluation methods used in this study. CONCLUSIONS: Road safety countermeasures were proposed for the potentially dangerous sections in road which failed to identify in the other methods. This study will contribute toward future study of more reliable Road Design Consistency Evaluation in the future for road safety.

Improved Road light Design using Ray-tracing method (광투사 방법을 이용한 가로등 디자인 개선)

  • Choi, Dae-Seub;Jung, Chan-Oong;Park, Sung-Tae;Hwang, Min-Young;Kim, Jae-Youn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.327-328
    • /
    • 2008
  • In this study, it was studied about the improved road light design for drivers and pedestrians using ray- or reverse ray-tracing method. Many of conventional road lights are not suitable for drivers and pedestrians because it has some serious problems such as glare effect or randomicity of illuminated areas. It was oriented from customary design method which was pointed at simple target such as luminance or electrical power. But it was not truth any more that the high luminance or electrical power consumption mean more bright and good road light. We studied ray-tracing method for road light reflector design to get the several goals. It means that good road light has easy for drivers and pedestrians eyes and illuminating objects on the road clearly. So, we set the design targets such as uniformity on the road area per one road light, shading angles and continuous luminance uniformity on the long distance road. We designed ideal road light conditions using ray-tracing method. We set the height of drivers and pedestrians eyes and calculated design guideline to make above design targets. Then we designed road light reflector using reverse ray-tracing method. And we achieved same luminance on the road almost half power consumption because we reduced loss of light. We achieved ideal design guide as 75 degrees of shading angles and 0.5 of luminance uniformity on the road area. Finally, we suggested reflector design for 250 watts power consumption CDM light source.

  • PDF

A Study On The Optimum Road Design in Jeju Island Using Digital Photogrammetry and GSIS (수치사진측량과 GSIS를 이용한 최적노선선정에 관한 연구)

  • 권혁춘;이병걸
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.519-522
    • /
    • 2004
  • The purpose of this research is to design a road using digital photogrammatry method to generate DEM(digital elevation model) and digital ortho image based on GSIS which was applied to the road simulation. The example study area was the suburbs of Jeju city. To this study, 1/5,000 digital map and GSIS technique were used for optimum road design of the island based on Arc View software. Using this software we can Set an overlay map by combination of hill shade map, slope map, aspect map, and building buffer map. Based on this overlap map, we designed the best road line and along this line we performed three dimensional road simulation using Microstation CAD and Inroads road design programs. From the results, we found that the DEM and digital ortho image acquired from stereoairphoto using digital photogrammatry was satisfied for choosing the best roadline and the developed three dimensional road simulation technique using GSIS technique was very useful to estimate the reasonable road design before the real road construction works.

  • PDF

Improved Road light Design using Ray-tracing method (광투사 방법을 이용한 가로등 디자인 개선)

  • Choi, Dae-Seub;Han, Jeong-Min;Park, Sung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.140-143
    • /
    • 2008
  • In this study, it was studied about the improved road light design for drivers and pedestrians using ray- or reverse ray-tracing method. Many of conventional road lights are not suitable for drivers and pedestrians because it has some serious problems such as glare effect or randomicity of illuminated areas. It was oriented from customary design method which was pointed at simple target such as luminance or electrical power. But it was not truth any more that the high luminance or electrical power consumption mean more bright and good mad light. We studied ray-tracing method for road light reflector design to get the several goals. It means that good road light has easy for drivers and Pedestrians eyes and illuminating objects on the road clearly. So, we set the design targets such as uniformity on the road area per one road light, shading angles and continuous luminance uniformity on the long distance road. We designed ideal road light conditions using ray-tracing method. We set the height of drivers and pedestrians eyes and calculated design guideline to make above design targets. Then we designed road light reflector using reverse ray-tracing method. And we achieved same luminance on the road almost half power consumption because we reduced loss of light. We achieved ideal design guide as 75 degrees of shading angles and 0.5 of luminance uniformity on the road area. Finally, we suggested reflector design for 250 watts power consumption CDM light source.

  • PDF

Road Alignment Design Using GIS

  • Kang, In-Joon;Lee, Jun-Seok;Kim, Tae-Hun;Park, Hyun
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this study, several basic data for road design and GIS data were used for selecting the optimized road alignment database system. The cut and fill volumes were compared with existing manual road design method through the analysis and data application in this database system. We solved and estimated objective, economic, environmental and technical problems caused in road construction comparing existing manual method with the road alignment which was selected in GIS automatically. Also, we performed three dimensional simulation with the existing road design program and simulation of virtual reality through Virtual GIS. This study showed the method in selecting the optimized road alignment through the analysis and comparison of the selected road alignment. The goal of this study is comparison and analysis of definite cut and fill volume and environmental problem after the road construction through analyzing and comparing the social, economic, technical and environmental aspect in the road alignments with various statistic data.

  • PDF

Study of a Ray-Tracing Method for Optimized Road Light Design

  • Oh, Seon;Choi, Dae-Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.194-196
    • /
    • 2010
  • A study is presented of improved road light design for drivers and pedestrians with the use of a ray- or reverse ray-tracing method. Many existing road lights are unsuitable for drivers and pedestrians because of serious problems such as glare effect or randomicity of illuminated areas. This situation has arisen because in customary design methods the emphasis has been on simple factors such as luminance or electrical power. However a high luminance or electrical power consumption, alone, do not guarantee bright and good road lighting. So we have applied a ray-tracing method to the design of a road light reflector with the goals of ensuring that illuminated objects on the road can be seen more clearly and that the illuminating light is more comfortable for the eyes of drivers and pedestrians. We have set design targets for factors such as the uniformity of lighting on the road area per road light, the shading angles and the continuous luminance uniformity on long lengths of road. For set heights of the eyes of drivers and pedestrians eyes we have calculated a design guideline for the achievement of the above design targets. Then we designed a road light reflector using the reverse ray-tracing approach. Also we have achieved the same luminance on the road with almost half the power consumption, through the reduction of lighty loss. In an ideal design optimum parameters are suggested to be a shading angle of 75 degrees and a luminance uniformity of 0.5 on the road area. This reflector performance is achievable with a 250 watt power consumption ceramic discharge metal light source.

Designing the Space under the Urban Elevated Road -A Case Study for Nengdong-Ro Street- (도시고가도로 입지구간 가로환경 설계 -능동로 '걷고싶은 거리'의 구간을 대상으로-)

  • 진양교;홍윤순
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.136-146
    • /
    • 2000
  • Although the urban elevated road is welcomed in modern society to deal with urban traffic problems, its negative influence on both the pedestrian environment and urban landscape has been frequently observed. Furthermore, the space under elevated structures has been ignored, being the lost space. Recently, several efforts have been devoted into bringing back the lostspace. However, any specific design guidelines shown in the street design of Japan and Singapore have not been suggested in Korea, yet. This study proposes a case of the Nengdong-Ro street design where the two-story urban elevated road is being constructed and negative effects of the elevated road are largely expected. One of the purposes of Nengdong-Ro street design proposed in this study is to relieve the negative effect os the two-story elevated road, and to provide a better pedestrian environment in Nengdong-Ro. The other purpose is to suggest general guidelines that can be applied to the similar context as Nengdong-Ro. It is considered that the space under the elevated road generally consist of three sections: 1) main section where the elevated road runs parallel with the ground, 2) landing section where elevated road goes down to the ground, and 3) facility section where facilities such as the platform and the ticketing booth are located. The design guidelines are suggested for each section, because each section has a different situation. Plans, section and elevations and the details of the street furniture are also incorporated to support the design guidelines.

  • PDF