• 제목/요약/키워드: Road body

검색결과 251건 처리시간 0.029초

승용차 운전자의 전신진동노출에 대한 피로-감소숙달 경계 (Fatigue-Decreased Proficiency(FDP) Boundary for Whole-Body Vibration Exposure in Passenger Car Driver)

  • 정재열;이기남
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1211-1216
    • /
    • 2002
  • To evaluate whole-body vibration(WBV) exposure and fatigue-decreased proficiency(FDP) boundary in passenger car driver, several roads in Busan were divided into 3 types by the condition of road surface; Road 1 was partially damaged, Road 2 was normal without damage, and Road 3 was better than Road 2. The results were following: The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 40km/h were 0.108m/s² and about 2099 minutes in Road 2 for xh axis, 0.134m/s² and about 1585 minutes in Road 2 for yh axis, and 0.183m/s² and about 1053 minutes in Road 2 for zh axis, respectively. The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 80km/h were 0.219m/s² and about 830 minutes in Road 3 xh axis, 0.203m/s² and about 918 minutes in Road 3 for yh axis, and 0.622m/s² and about 195 minutes in Road 1 for zh axis, respectively. The highest vector sums of whole-body vibration exposure at 40km/h and 804km/h were 0.328m/s² in Road 2 and 0.730m/s² in Road 1, respectively. The highest crest factors at 40km/h were 4.25 in Road 1 for xh, 4.51 in Road 3 for yh, and 5.81 in Road 2 for zh, respectively. The highest crest factors at 80km/h were 5.57 in Road 1 for xh, 5.60 in Road 2 for yh, and 6.46 in Road 3 for zh, respectively. The highest transmissibilities of whole-body vibration from floor to seat at 40km/h and 80km/h were 0.89 in Road 3 and 0.82 in Road 3 for xh axis, 0.83 in Road 3 and 0.87 in Road 1 and 2 for yh, and 0.80 in Road 2 and 0.92 in Road 1 tor zh axis, respectively. The highest fatigue-decreased proficiency boundaries for whole-body vibration exposure of passenger car driver in floor and seat were 457 minutes in Road 3 and 583 minutes in Road 3 at 40km/h and 159 minutes in Road 2 and 251 minutes in Road 2 at 80km/h, respectively.

A Study on Evaluation of Whole-Body Vibration from Vehicle for Different Road Surfaces

  • Kim, Su-Hee;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • 제7권1호
    • /
    • pp.26-29
    • /
    • 2008
  • The purpose of this study is the measurement of whole-body vibration for different road surfaces. Experimental measurements were taken on asphalt, cement, and off-road surfaces as defined by ISO 2631-1. Each experiment was conducted under the same set of conditions (measurement duration, times, speed, vehicle type). Measurement duration was 10 minutes and 3 separate measurements were taken on each road surface. Vehicle speed was 60km/h. In accordance with ISO 2631-1, an acceleration sensor is set up between the driver's seat and the human body. For evaluation, RMS(root-mean-square) values were taken as suggested by ISO 2631-1. The results suggest "health guidance caution zones", and the evaluation was based on obtaining the vector sum with "health guidance caution zones".

EVALUATION OF ROAD-INDUCED NOISE OF A VEHICLE USING EXPERIMENTAL APPROACH

  • Ko, K.-H.;Heo, J.-J.;Kook, H.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.21-30
    • /
    • 2003
  • In this paper a systematic test procedure for evaluation of road-induced noise of a vehicle and guidelines for each test are presented. Also, a practical application of the test procedure to a small SUV is presented. According to the test procedure, all the tests were performed to evaluate road-induced booming noise that is in low frequency range. First of all the information on characteristics of road-induced noise was obtained through baseline test. Coupling effects between body structure and acoustic cavity of a compartment were obtained by means of modal tests for a structure and an acoustic cavity. Local stiffness of joint areas between chassis system and car-body was determined by test for measurement of input point inertance. Noise sensitivities of body joints to operational forces were obtained through test for measurement of noise transfer functions. Operational deflection shapes made us analyze behaviors of chassis system under running condition and then find sources of noise due to resonance of the chassis system. Finally, Principal Component Analysis and Transfer Path Analysis were utilized to investigate main paths of road-induced noise. In order to evaluate road-induced booming noise exactly, all of tests mentioned above should be performed systematically.

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Drive Point Dynamic Stiffness(DPDS)분석을 통한 Road noise 개선 (Road noise improvement using Drive Point Dynamic Stiffness(DPDS) estimation)

  • 이상윤;김영호;이근수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.612-616
    • /
    • 2007
  • This paper describes a procedure to improve road noise using DPDS estimation. We can estimate a body local stiffness at chassis mounting point where the path of road input vibration by DPDS with experiment and FE simulation. DPDS result from FE model has a good correlation with experiment data. FE model DPDS shows weak points among chassis mounting points. Body panel thickness and shape were changed to meet DPDS target. Improved DPDS of critical points makes a road noise level lower.

  • PDF

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Differences in Density and Body Condition of Small Rodent Populations on Different Distance from Road

  • Hur, Wee-Haeng;Lee, Woo-Shin;Choi, Chang-Yong;Park, Young-Su;Lee, Chang-Bae;Rhim, Shin-Jae
    • 한국산림과학회지
    • /
    • 제94권2호통권159호
    • /
    • pp.108-111
    • /
    • 2005
  • This study was conducted to identify the road effect on small rodent populations within fragmented forest areas around the road from June to September 2002, in 9 study sites of Baekdugdaegan mountains, Korea. Two species of small rodents, Korean field mouse Apodemus peninsulae and striped field mouse Apodemus agrarius, were captured in this study. Korean field mouse preferred forest area, and striped field mouse generally has been found edge area around road. Mean body weight of Korean field mouse was significantly different, but that of striped field mouse was not between both distance from road. Korean field mouse is forest-dwelling species and their distribution is limited in forest area. In contrast, striped field mouse has wide distributional range around road. The effects of road is different in each small rodent species and their habitat preferences.

승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구 (Integrated Test and Evaluation for Improvement of Vehicle Road Noise)

  • 고강호;허승진;국형석
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

휠 차량의 내구 시험장 조성을 위한 매개변수 연구 (A Parametric Study for the Construction of Durability Test Track of a Wheel Type Vehicle)

  • 송세철;김형근;박태건;김동준
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 1998
  • For the design and development of the wheel type excavator, the dynamic effects of travelling on the performance of the equipment should be first analyzed and conside- red in the initial design stage. In order to test the durability of the equipment in a short period, th travelling test should be performed over accelerated durability test tracks. which is more severe than general field roads such as city road, paved road, unpaved road and rough road. In this paper, a parametric study is performed in order to determine important design parameters of durability test track of a wheel type excavator. A rigid body model is developed using DADS and dynamic analysis is performed for the equipment travelling over several test roads with different severity. A comparison of test and analysis results is also presented.

  • PDF

위치별 진동 측정을 통한 차체강성평가 (Evaluation of Vehicle Body Stiffness by Measuring Local Vibration)

  • 이경태;전용두;최두석
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.195-200
    • /
    • 2013
  • Road loads data are indispensable in the evaluation of BSR (Buzz, Squeak, and Rattle) of automotive parts/modules. However, there are uncertainties on the best measurement locations for representative body motion and for seat systems. In the present study, we measure road loads at four different locations of a body. A-pillars on the driver and passenger sides and left and right frame fronts of the front passenger seat mountings are selected to study the acceleration behavior at different locations. The measurements are conducted with passenger cars driving local roads at 50km/hr. The measured time-acceleration data are then transformed into PSD (power spectral density) data to compare the characteristics of local accelerations. By defining the deviated acceleration components from rigid body motion, the stiffness of vehicle body could be simply expressed in a quantitative basis. Measured data from two different vehicles are presented to demonstrate their relative vehicle body stiffness.