• Title/Summary/Keyword: Road Vehicle

Search Result 2,500, Processing Time 0.031 seconds

Derivation of Assessment Scenario Elements for Automated Vehicles in the Expressway Mainline Section (자율주행차 평가 시나리오 구성요소 도출: 고속도로 본선구간을 중심으로)

  • Ko, Woori;Yun, Ilsoo;Park, Sangmin;Jeong, Harim;Park, Sungho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.221-239
    • /
    • 2022
  • Various elements such as geometry, traffic safety facilities, congestion level, weather, etc., need to be appropriately reflected in the assessment scenario evaluating the driving safety of automated vehicles. Therefore, this study first established a scenario structure and defined the layer of elements, to derive the elements to be reflected in the automated driving safety evaluation. After that, all elemental candidates that can be reflected in each layer were derived by reviewing the relevant literature. Finally, as a result of an expert survey, 77 items were selected to be reflected in the automated driving safety evaluation. The selected elements are expected to be actively utilized in developing scenarios for the driving safety evaluation of automated vehicles in simulation, proving ground, and real road assessments.

Analysis of E-scooter Riding Safety on Slopes Based on Real Road (실도로 기반 E-scooter 경사로 주행 안전성 연구)

  • Iljoon Chang;Jaeduk Lee;Seyoung Ahn;Chanwoo Roh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.102-113
    • /
    • 2023
  • With the increasing use of E-scooters, there is an urgent need for research into their driving risks because of the rising number of related accidents. Existing theoretical analysis methods are primarily vehicle-centered and do not adequately reflect the lightweight and compact characteristics of E-scooters. This study was conducted on real roads to analyze the risk and stable speeds of drivers on longitudinal slopes, considering the unique attributes of E-scooters. The risk speed on slopes was, on average, 21 km/h, with the initial risk speed decreasing as the slope became steeper. The stable speed was determined to be an average of 17 km/h, except on slopes of 1-2%, which presented a relatively low risk. These results are expected to contribute to the academic foundation for policies aimed at reducing the top speed of personal mobility, as is currently being promoted in Korea.

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

Development of a Interface Structure of Bogie and Carbody in Mountain Tram running on sharp Curves (급곡선 급경사 운행 산악트램의 대차 및 차체 연결 구조 개발)

  • Seo, Sung-il;Mun, Hyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.275-282
    • /
    • 2018
  • Mountain trams are an environmental-friendly transportation system that run wirelessly on an embedded track constructed on previous mountain roads, and can run despite the frozen road. On the other hand, there is some difficulty on sharp and steep tracks. In this study, after possible technical problems were defined in mountain trams running on a sharp and steep track, the design solutions for the interface structure of bogie and carbody were proposed. In addition, a prototype was made and its performance was tested to verify the solutions. Because the difference in the distance of the inner and outer rails on a sharp curve is severe enough to interrupt running, independent rotating wheels with different angular speeds were developed and applied. To prevent derailment due to the large attack angle and lateral force caused by the previous vehicle of 2bogie-and-1carbody on the sharp curve, a vehicle with 1bogie-and-1carbody was designed and applied. A prototype vehicle of 1bogie-and-1carbody with independent rotating wheels was made to improve the performance during the test running on a small track. A coupler was designed to absorb the large rotations of 3 degrees-of-freedom between the carbodies of a mountain tram running on the steep curved track. After a small scale prototype was made, the performance was verified by a function test.

A Study on the Estimation of the V2 X-Rate Ratio for the Collection of Highway Traffic Information (고속도로 교통정보 수집을 위한 V2X 차량비율 추정연구)

  • Na, Sungyong;Lee, Seungjae;Ahn, Sanghyun;Kim, Jooyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Transportation is gradually changing into the era of V2X and autonomous cars. Accurate judgement of traffic conditions is an important indicator of route choice or autonomous driving. There are many ways to use probes car such as taxis, as a way to identify accurate traffic conditions. These methods may vary depending on the characteristics of the probe vehicle, and there is a problem with the cost. The V2X vehicle can solve these problems and collect traffic information in real time. If all vehicles are of V2X vehicle, these issues are expected to be resolved briefly. However, if the communication information of a V2X vehicle is represented by a traffic representative in a traffic with only V2X, the traffic information of some V2X vehicles will be able to collect traffic information. To accomplish this, a virtual network and transport were created and various scenarios were performed through SUMO simulations. It has been analyzed that 3-5 % of V2 vehicles are capable of representative the road traffic characteristics. In the future, various follow-up studies are planned.

Structural Strength Evaluation for Development of a Vertical Transfer Device for a Personal Rapid Transit (PRT) Vehicle (PRT 차량용 수직이송장치의 개발을 위한 구조강도 평가)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Song, Joon-Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This paper presents numerical results of static structural stability analysis in development of a vertical transfer device of a PRT(Personal Rapid Transit) vehicle. The vertical transfer of a fully occupied vehicle operating on a road network is the first attempt, which is expected to contribute to overcome the limitations of conventional 2-dimensional operation mode. In particular, the vertical transfer apparatus designed based on vertical circulating conveyors is capable of continuous transfer without time delay so that it enables to accommodate a high traffic density. This system has been frequently used in a logistics field; however, it is essential to assess a structural integrity because an external force by a vehicle weight is exerted on the conveyors in the form of a concentrated load unlike a conventional logistic transport. In this study, prior to the production process, the structural performance of the pilot design in an early stage is numerically evaluated using the commercial finite element method (FEM) solver (i.e., $Ansys^{(R)}$).

Models for Determining the Vehicle and Pedestrian Volumes for the installation of Pedestrian Pushbuttons (보행자 작동신호기 설치기준 정립을 위한 적정 차량 및 보행자 교통량 추정모형)

  • YOON, Seung Sup;YANG, Jae Ho;KIM, Nam Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.488-496
    • /
    • 2015
  • The main reason to install pedestrian pushbuttons is improving traffic operations. The current guideline for the installation of signal systems with pedestrian pushbuttons is car-oriented. It is difficult to clearly understand the guideline because there isn't an in-depth study to compare the pros and cons of the pedestrian- and vehicle-oriented methods in terms of waiting time. Thus, this study aims to estimate the waiting times of pedestrians and vehicles. The two delay times are compared considering the hypothetical circumstances such as geometry, pedestrian crossing time, pedestrian/vehicle counts and arrival distribution. The results show that when the pedestrian traffic volume exceeds 97 ped/h in the case of a two-lane road (one lane in each direction) the pushbutton system is effective and beneficial to pedestrians. It means that the total waiting time of pedestrians is less than the one of vehicles. Additional four scenarios are designed and tested by varying the number of lanes and design speeds. In conclusion, the pushbutton signal is more beneficial for pedestrians when the number of pedestrians is less than or equal to 85, 70, and 70 ped/h for the three-lane scenario, the four-lane with the design speed of 80km/h scenario, and the four-lane with the design speed of 100km/h, respectively.

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

CCTV-Aided Accident Detection System on Four Lane Highway with Calogero-Moser System (칼로게로 모제 시스템을 활용한 4차선 도로의 사고검지 폐쇄회로 카메라 시스템)

  • Lee, In Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.255-263
    • /
    • 2014
  • Today, a number of CCTV on the highway is to observe the flow of traffics. There have been a number of studies where traffic data (e.g., the speed of vehicles and the amount of traffic on the road) are transferred back to the centralized server so that an appropriate action can be taken. This paper introduces a system that detects the changes of traffic flows caused by an accident or unexpected stopping (i.e., vehicle remains idle) by monitoring each lane separately. The traffic flows of each lane are level spacing curve that shows Wigner distribution for location vector. Applying calogero-moser system and Hamiltonian system, probability equation for each level-spacing curve is derived. The high level of modification of the signal means that the lane is in accident situation. This is different from previous studies in that it does more than looking for the signal from only one lane, now it is able to detect an accident in entire flow of traffic. In process of monitoring traffic flow of each lane, when camera recognizes a shadow of vehicle as a vehicle, it will affect the accident detecting capability. To prevent this from happening, the study introduces how to get rid of such shadow. The system using Basian network method is being compared for capability evaluation of the system of the study. As a result, the system of the study appeared to be better in performance in detecting the modification of traffic flow caused by idle vehicle.

Design Methodology of Longitudinal Post Tensioning for Post-Tensioned Concrete Pavement (포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This study was conducted to develop the design methodology of longitudinal post tensioning for the post-tensioned concrete pavement (PTCP). The longitudinal stress distribution in the PTCP slab was analyzed when post tensioning was applied. Then, the tensile stress distribution in the PTCP slab due to the environmental and vehicle loads needed for the design was investigated. In addition, prestress losses were calculated considering the losses due to the frictional resistance between the slab and underlying layer and due to various reasons related to tensioning. The tensile stresses used for the design were obtained by adding the stresses from the critical conditions under both the environmental and vehicle loads. The prestress losses were obtained by considering actual field conditions. The effective post tensioning amount was determined by considering the design loads including environmental and vehicle loads and various losses, and the effect of the allowable tensile stress on the post tensioning amount was investigated. The initial stage of the design of the longitudinal post tensioning is to obtain the stresses under the design loads and the required prestress determined by subtracting the allowable tensile stress from the design stress. Then, the optimal tendon spacing and the tensioning amount can be obtained by comparing with the effective tensioning amount including various stress losses.

  • PDF