• Title/Summary/Keyword: Road Runoff

Search Result 117, Processing Time 0.022 seconds

Water Quality Characteristics of Nonpoint Pollutants based on the Road Type (도로 유형별 비점오염원의 수질특성)

  • Jang, Dae-Chang;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.631-636
    • /
    • 2009
  • This study has its intention to investigate the water quality of non-point source which is runoff from roads. We have classified and selected twelve sites as city road, industrial road, national road and mountain road by considering their traffic volume and surroundings. Water quality was analyzed based on BOD, COD, SS, T-N and T-P and the concentrations were measured by sampling after rainfall with the interval of 10 minutes, 20 minutes, and 30 minutes. BOD was the highest in city road with 57.6 mg/L and the lowest in mountain road with 45.0 mg/L. For COD, the highest concentration in industrial road was 146.5 mg/L and the lowest was in mountain road with 98.0 mg/L. The run off concentration of SS was up to maximum 630.0 mg/L (average 280.4 mg/L) which was remarkable compared to other types of road. It showed its lowest concentration in national road with 76.0 mg/L. T-N and T-P were the highest in industrial road and the lowest in mountain road. We found out that the runoff concentration was high with large amount of traffic volume and it seemed to be high in city road and industrial road where they were largely affected by their surroundings. Relatively, national road and mountain road seemed to show low concentration as they have less traffic volume and less affected by their surroundings.

A Study on the Micropollutants and Removal of Micropollutants Contained in Road Runoff (노면배수에 함유된 미량오염물질 및 제거에 관한 연구)

  • Kim, Boo-Gil;Park, Heung-Jai;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.215-219
    • /
    • 2009
  • Micropollutants, which can be caused by imperfect combustion, are toxic chemical compound that flows into the river system after being contained in road runoff, a non-point source pollutant and accumulates in the body. The micropollutants that have characteristics such as toxicity, persistence, bio-accumulation, long-range transportation behave so similarly to micro particles that they can be removed by means of filtration or absorption. This study has examined the kinds and concentrations of micropollutants contained in deposited road particles. It has revealed that the kinds of micropollutants contained in the clarified supernatant liquid of deposited road particles are heavy metals and polycyclic aromatic hydrocarbons(PAHs) composed of two or three benzene rings, including naphthalene and acenaphthalene. Their concentrations have been shown to be low, with 0.418 mg/L, 0.058 mg/L, 0.104 mg/L, 0.014 mg/L, 0.00075 mg/L for Zn, Pb, Cu, Cr, Cd, respectively and 0.00156 mg/L and 0.00184 mg/L for naphthalene and acenaphthalene.

Characteristics of Non-Point Pollution from Road Surface Runoff

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • Pollutants from urban pavement consists various kinds of substances which are originated from dry deposition, a grind out tire, corrosive action of rain to pavement and facilities and raw materials of the road etc.. These are major pollutants of urban NPS (Non-point source) during rainfall period. However there is not enough information to control such pollutants for appropriate management of natural water quality. In this study of transportation areas, three monitoring stations were set up at trunk road, urban highway and national road in Gyeongnam province. Runoff flow rate was measured at every 15minutes by automatic flow meters installed at the end of storm sewer pipe within the road catchment area for water quality analysis. Data was collected every 15 minutes for initial two hours of rainfall. Additional samples were collected 1-4 hours interval till the end of rainfall. The monitoring parameters were $COD_{Mn}$, SS, T-N & T-P and heavy metals. The average EMCs of TSS and $COD_{Mn}$ were 62.0 mg/L and 24.2 mg/L on the city trunk road, which were higher than those of urban highway and national road, indicating higher pollutant loads due to activities in the city downtown area beside the vehicle. On the other hand, the average EMC of T-N and T-P were in the range of 2.67-3.23 mg/L and 0.19-3.21 mg/L for all the sampling sites. Heavy metals from the roads were mainly Fe, Zn, Cu and Mn, showing variable EMCs by the type of road. From the TSS wash-off analysis in terms of FF(first flush) index, first flush phenomenon was clearly observed in the trunk road(FF : 0.89-1.43). However, such mass delivery behavior was not apparently shown in urban highway(FF : 0.90-1.11) and national road(FF : 0.81-1.41).

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

Evaluation of Catchbasin for Increasing Interception Capability of Stormwater Runoff (강우유출수 차집능력 증대형 빗물받이의 성능 평가)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.567-575
    • /
    • 2017
  • It is not cost effective to raise the density of catch basins in preparation for heavy rainfall in terms of construction and maintenance. Our researchers have developed the new catch basin for increasing interception capacity of runoff with internal filtration structure. To compare interception capacity of an existing catch basin with the invented catch basin, a hydraulic experiment device with 4% of road gradients and 0.2% of road gradients was constructed. For runoff conditions of 4.4 l/s, 6.7 l/s and 10.4 l/s, capability of runoff and separation capability of debris (sand and leaves) were evaluated. As the main experimental results, the effectiveness of the developed catch basin has been verified with an increase in interception rate of approximately 22% for the runoff of 6.7 l/s as heavy rainfall. However, the results of invented catch basin showed only 4.5% of settlement rate of debris regarding sand. Therefore, the authors proposed an improved tilted screen structure additionally. After reviewing the performance of improved catch basin, application of the invented catch basin is expected to drain runoff effectively when it is applied to the faulty road drainage section.

Characteristics of Particle Size Distribution and Heavy Metal Concentration in Pavement Road Runoff (포장지역 강우유출수에서의 입자성물질의 입도 분포 및 중금속 특성에 관한 연구)

  • Park, Hai-Mi;Kim, Young-Jun;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-149
    • /
    • 2009
  • Objective of this study was to characterize the particle size distribution(PSD) and quantify the pollutant concentration in highway runoff. Runoff samples during two rainfall events at four road sites in Gyunggi-Do were collected and PSD and associated pollutant distribution was quantified. Also, rainfall amount, flow rate, and other pollutants in samples were analyzed. PSDs in each sample were analyzed and compared with temporal trends of other pollutants. High partial event mean concentrations(PEMC) of particulates were observed at the beginning of runoff and rapid decrease thereafter. Other pollution parameters such as turbidity, TSS, BOD, TN, and TP also have similar temporal runoff trend with the PEMC. Especially PEMC was well correlated with total suspended solids(TSS) and turbidity. Cu, Pb, Zn had high concentration both runoff and sediment. Heavy metals in sediment were strongly bound to fine particles that have the large surface area-to-volume ratios.

  • PDF

A Study On Heavy Metal Contamination in the Different Size Fractions of Deposited Road Particles(DRPs) (노면퇴적물의 입자 크기에 따른 중금속 오염에 관한 연구)

  • Kim, Boo-Gil;Lee, Byung-Cheol
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1171-1175
    • /
    • 2006
  • Deposited road particles (DRPs) were analysed for heavy metal concentrations at four different roads in a city, Korea. The samples were collected using a roadway surface vacuum cleaning vehicle which was commonly used in collecting roadway surface particles. Six particle size ranges were analyzed separately for twelve heavy metal elements (Cd, Cr, Pb, Ni, Al, As, Co, Cu, Fe, Mn, Zn and Hg). At all sampling sites, the high concentration of the heavy metals occurred in the <74um particle size range, which conventional roadway cleaning vehicles do not remove efficiently. The Pb concentration significantly increased with decreasing particle size of DRPs, and other toxic heavy metals (Cd, Cr and Ni) also showed similar results. The heavy metal concentrations in the smaller size fraction of DRPs is important because they are contaminants that are preferentially transported by road runoff during rainfall.

Simulation of Surface Flow and Soil Erosion on a Forest Road Using KINEROS2 Model

  • Im, Sang-Jun;Lee, Sang-Ho;Kim, Dong-Yeob
    • Journal of agriculture & life science
    • /
    • v.43 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The physically based model KINEROS2 was applied to forest road segments for simulating hydrology and sediment production. Data on rainfall amounts, runoff volume, and sediment yields were collected at two small plots in the Yangpyong experimental watershed. The KlNEROS2 model can be parameterized to match the volume of surface flow and sediment yields during seven storm events. Model predictions of hydrology were in good agreement with the observed data at two plots in the year 1997 and 1998. A comparison between the observed and predicted sediment yields indicated that the model provided reasonable estimates, although the model tended to under-estimate for some storm events. The overall result shows that the KINEROS2 model properly represents the hydrology and sediment transport processes in the forest road segments.

Long Term Monitoring of Storm Surface Runoff from Urban Pavement Road in Korea

  • Lee, C.S.;Seo, G.T.;Lee, J.H.;Yoon, Y.S.;You, J.J.;Sin, C.K.
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.184-191
    • /
    • 2008
  • Long term monitoring was conducted to investigate a surface runoff of pollution from urban highway. The monitoring data was collected for 18 rainfall events and was used to correlate pollution load to various parameters, such as rainfall intensity, antecedent dry days and total discharge flow. Runoff coefficient and seasonal variation were also evaluated. The mean runoff coefficient of the highway was 0.823(range; $0.4687{\sim}0.9884$), and wash-off ratio for $COD_{Mn}$ and SS loads was 72.6% and 64.3%, respectively. For the initial rainfall event, the runoff EMC of $COD_{Mn}$ was high in summer and the EMC of SS was high in autumn season. However the seasonal variation of T-N and T-P was not significant. The discharged $COD_{Mn}$-EMC was $147.6\;mg/L{\sim}9.0\;mg/L$ on the generated $COD_{Mn}$-EMC of $98.8\;mg/L{\sim}8.9\;mg/L$. While the generated EMC of SS was in $285.7\;mg/L{\sim}20.0\;mg/L$ and its discharged EMC was in $190.4\;mg/L{\sim}8.0\;mg/L$. EMC of pollutants was not directly related to the first flush rainfall intensity and the antecedent dry days. But the correlation was relatively high between EMC and cumulative runoff flow volume. The trend of EMC was reduced with the cumulative runoff flow volume.

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF