• Title/Summary/Keyword: Road Runoff

Search Result 117, Processing Time 0.025 seconds

Analysis of impact of land cover change on runoff through several Streams in Jeju Island, Korea (토지피복도 변화에 따른 제주도 주요 상시하천의 유출변화 분석)

  • Yang, Sung-Kee;Jung, Woo-Yeol;Han, Woong-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1033-1036
    • /
    • 2010
  • Since Jeju island has depended a water resource on the underground water because of a poor development of the surface flow, Jeju island is in need of the surface resource development to prevent the future shortage of the underground water due to excessive development and use of it. The study shows that the SWAT model(continuous rainfall-runoff model) is applied to estimate the outflow in the drainage watershed area, where it has been urbanized through the change of the land, such as a tourism development, cultivation, housing, and impervious layer road development. Near watershed area in Jeju island, weather and topographical SWAT input data were collected, and compared the outflow change of past and present.

  • PDF

Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area (국내 고속도로 휴게소지역 비점오염원 유출특성 분석)

  • Kim, Jeong-Hyun;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-137
    • /
    • 2010
  • The stormwater runoff from rest areas in highways are known as more polluted compared to highways because of more vehicle activities. This study is performed to find pollutant characteristics in the rest areas in the magnitude of statistical pollutant concentrations during storms. Washoff characteristics of pollutants from rest areas by monitoring of rainfall, runoff rate and runoff samples were evaluated. High concentrations of pollutants in runoff were observed at the beginning of runoff and rapid decrease thereafter, indicating that first-flush effects are clearly occurred. Event Mean Concentrations(EMCs) of TSS, COD, TN, and TP are estimated to be in the range of 31.04-127.11mg/L, 35.5-369.5mg/L, 2.62-9.86 mg/L, and 0.53-1.96mg/L, respectively. Heavy metals in runoff showed relatively high values, possibly due to the abrasion of brake pad or tire while cars are slowly moving for parking. EMCs of total Pb, total Cu, and total Ni are in the range of $1206-16293{\mu}g/L$, $237-7906{\mu}g/L$, and $53-6372{\mu}g/L$, respectively. Pollutant loading per rest area calculated by using EMC, flowrate and target area is also described for each pollutant.

Drainage and Treatment Characteristics of Runoff by Media (여재에 따른 도로면 유출수의 배수 및 처리특성)

  • Kim, Seog-gu;Yun, Sang-Ieen;Kim, Young-im;Lee, Yong-jae;Kim, Ree-ho;Kim, Jong-oh
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.500-505
    • /
    • 2004
  • While more attention has been paid in recent years to urban point source pollution control, no considerable measures have been taken to control urban non-point source pollution. Contaminants from non-point sources deposited on urban impermeable surfaces such as road and highway are easily released to the public waters by rainfall, leading to the deterioration in water quality in urban area. The present study investigated a system using filter media to reduce the level of contamination in urban road runoff. Three different media, designated as J-P (polypropylene, blowing type), B-P (polypropylene, fiber type), and P-F (Polyvinyl alcohol, cube and sheet type) were evaluated on the basis of pollutant removal efficiency as well as hydraulic property. Experiments were peformed using a 1/4-scale treatment unit at various pollutant roading and rainfall intensity with real rainwater runoff collected from road surfaces. The results at different rainfall intensities shows that the medium J-P is superior to the other media for water permeability. J-P was not blocked at 10 mm/hr rainfall and its permeability was stable. On the other hand, B-P and P-F resulted in substantial overflow ratio even at I mm/hr rainfall intensity. Comparing treatment efficiencies for suspended solids, all media showed similar removal ranged from 91 % to 95%. However, J-P seems to be better than the other media considering its higher water permeability. J-P and P-F, both hydrophobic, yielded over 76% of heavy metal removal. But, the hydrophilic media B-P showed much smaller removal ranging from 26% to 47%. This indicates that J-P and P-F are beneficial to remove heavy metal due to their hydrophobic property. The treatment efficiencies over PAHs (poly aromatic hydrocarbons) showed the similar removal efficiency ranging from 66% to 97% for all three media.

Road Runoff Treatment using Pilot Scale-NPS Treatment Plant Filling up Expended Polypropylene Media (발포고분자여재가 충전된 파일럿 규모의 비점오염물질 처리장치를 이용한 도로 강우유출수 처리)

  • Kim, Seogku;Oh, Hyecheol;Ahn, Jaehwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.711-718
    • /
    • 2014
  • Investigated the processing characteristics of the pollutants and runoff due to storm events in the actual application of the road fields and a Non-Point Sources (NPS) pilot scale equipment. This phenomenon has occurred in the influent bypass the blockage occurs after 90 min the expended polymeric media was filled with filtered column. When entering a treatment tank SS 200 mg/L or more high concentration of effluent treatment efficiency was reduced from the reaction time 60 min. Influent concentration less then SS 180 mg/L was stable handling. The $COD_{Cr}/SS$ ratio were analyzed with 0.67, median value. Showed 92.1% and 82.3% respectively with an average removal rate of the SS and the $COD_{Cr}$. If the influent concentration of TP is the 0.5 mg/L or less, the quality of the treated water is 0.1 mg/L levels were expressed in a stable process. And when entering the 1.0 mg/L or more of the treated water, had a greater than average 0.2 mg/L. If the influent concentration of TN is 4~10 mg/L, the treatment water quality level was kept a 1.5~3.0 mg/L. The average removal efficiency of TP and TN respectively 73.9%, 50.4%.

Development of tree box filter LID system for treating road runoff (LID 시설로서 도로에 적용 가능한 수목여과시설 개발)

  • Choi, Jiyeon;Son, Younggyu;Lee, Soyoung;Lee, Yuhwa;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.407-412
    • /
    • 2013
  • The aim of this study was to develop a tree box filter system, an example of Low Impact Development technology, for treating stormwater runoff from road. Monitoring of storm events was performed between June 2011 and November 2012 to evaluate the system performance during wet day. Based on the results, all runoff volume generated by rainfall less than 2 mm was stored in the system. The minimum volume reduction of 20% was observed in the system for rainfall greater than 20 mm. The greatest removal efficiency was exhibited by the system for total heavy metals ranging from 70 to 73% while satisfactory removal efficiency was exhibited by the system for particulate matters, organic matters and nutrients ranging from 60 to 68%. The system showed greater pollutant removal efficiency of 67 to 83% for rainfall less than 10 mm compared to rainfall greater than 10 mm which has 39 to 75% pollutant removal efficiency. The system exhibited less pollutant reduction for rainfall greater than 10 mm due to the decreased retention capacity of the system for increased rainfall. Overall, the system has proved to be an option for stormwater management that can be recommended for on-site application. Similar system may be designed based on several factors such as rainfall depth, facility size and pollutant removal efficiency.

Analysis of Intercepted Flow according to Change of Flow Width in Gutter (도로 흐름폭 변화에 따른 차집유량 분석)

  • Joo, Dong Won;Kim, Jung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • In dense cities, which are covered by many impermeable areas, rainwater flows quickly along the roads and collects in certain areas. The surface runoff that fails to get intercepted by the roadside rain gutters results in a wider flow of water along the sides, which in turn increases the amount of water on the road and causes traffic congestion as well as accidents due to slippage. Based on these issues, this study was carried out in order to propose an intercepted flow calculation formula. To this end, the maximum longitudinal slopes of arterial roads and expressways were reflected to depict a road condition of 2~10 %, while a general traverse slope of 2 % was selected for the traverse slope on the side. As for the road lane condition, two, three, and four lanes were chosen for the area from the centerline to the sidewalk. As for the experimental flow rate, the rainwater runoffs at the actual design frequency of 5, 10, 20, and 30 years for road conditions were converted into experimental flow rates, and as a result, flow rates ranging from 1.36 l/s to 3.96 l/s were divided into ten flow rates for a hydraulic experiment. Also, an equation taking into consideration the inflow velocity and flow width along the roadsides was proposed. The results of the experiment showed an increase in flow width and a decrease in interception rate. Also, the inflow velocity at a traverse slope of 2 % was measured, while increasing the longitudinal slope. Accordingly, an equation for calculating the flow intercepted by rain gutters at a flow width reflecting the longitudinal slope of the road and rainwater runoff, according to the design frequency, was derived by performing a regression analysis using IBM SPSS Statistics 24. It is deemed that the equation derived in this study will be useful in designing rain gutters for roads.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

A Rainfall-Runoff for Seom-Gang Experimental Watershed of Road Drainage (섬강 도로배수 시험유역의 강우-유출)

  • Lee, In-Ah;Choi, Hung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1597-1601
    • /
    • 2007
  • 본 연구는 도로배수 유역 현황조사에 의해 유역의 적정 크기 등을 고려하여 산지유역인 상지대 섬강 시험유역 내에 도로배수 소유역을 선정하여 운영하였다. 2005년 5월부터 현재까지 수위관측소와 우량관측소를 설치하여 수위 및 우량자료를 수집하고, 홍수기뿐만 아니라 평 갈수기에도 주기적으로 유량 관측을 통해 수위-유량 곡선을 개발하였다. 도로배수유역의 강우-유출특성을 분석하기위하여 도달시간을 산정하였고, HEC-1 모형을 이용한 모의결과를 실측자료와 비교분석을 실시하여 모형의 사용성을 검토하였다.

  • PDF

Characteristics of Collected Sediments from Road Sweeping and Reduction in the Nonpoint Source Pollutants Loading (도로청소 수거퇴적물의 특성과 비점오염물질 저감효과)

  • Jeong, Kwon;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 2011
  • The stormwater runoff from road or expressway is known as one of important nonpoint pollution sources. To reduce the pollutants discharge from road or expressway, many best management practices(BMPs) have been applied and planned. Among the BMPs, road sweeping can be effective way to prevent pollutant washoff to environment. This study is performed to evaluate the characteristics of particles collected from the road by sweeping car. Size distribution and pollutant concentration of particles were analyzed. Based on the pollutant concentration and the specification of road such as length, width, and unit for pollutant generation, total amount of pollutant to be removed by road sweeping was estimated. Most of sediments collected by road sweeping was classified into sandy soil and fraction of fine grained soil was low. Although the concentrations of pollutants such as heavy metals in road sediments did not exceed the soil contamination criteria, washout of pollutants during sweeping work by spraying water might cause leaching of pollutants contained in sediments and thus resulted in low pollutant concentrations. Reduced amounts of pollutant by road sweeping showed 31.4% TSS reduction for ${\bigcirc}{\bigcirc}$ region and 7.7% TSS for ${\triangle}{\triangle}$ region. Other pollutants showed low reduction rate, because of their leaching by water spraying. Results from this study indicate that detailed and well-planned investigation for the road sweeping is necessary for the accurate estimation of pollutant reduction from road or expressway.

An Analysis of Flood Mitigation Effect Applying to LID in Mokgamcheon Watershed using SWMM Model (SWMM 모형을 이용한 목감천 유역의 LID 시설 적용 홍수저감효과 분석)

  • Jang, Yeongsun;Mun, Sungho;Yang, Sunglin
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: In this study, flood mitigation effect of drainage asphalt concrete pavement were analyzed by a SWMM 5.0 program in order to evaluate the low impact development (LID) based on the drainage asphalt concrete pavements. METHODS: In order to determine the porosity parameters of drainage asphalt concretes, the specimen mixtures were manufactured using the conditions presented in the previous study. The numerical simulation was conducted using the SWMM 5.0 program considering the flood mitigation effect of drainage asphalt concrete pavements. The effect of flood reduction can be observed when drainage asphalt concrete pavements were applied to Mokgamcheon watershed. The flood mitigation effect analysis of Mokgamcheon watershed as well as continuous simulation of subwatershed runoff were performed through this study. RESULTS : The analysis of drainage asphalt concrete pavements was carried out for evaluating the effect on runoff, resulting in: the peak flow decreases up to 1.26~9.53% after drainage asphalt concrete pavements applied in the SWMM 5.0 program furthermore, the discharge decreases up to 0.55~4.11%. CONCLUSIONS: As a result, the reduced peak flow and discharge were found through the SWMM 5.0 program. It can be concluded that the flood is effectively reduced when the drainage asphalt concrete pavements are used.