• Title/Summary/Keyword: Road Runoff

Search Result 117, Processing Time 0.027 seconds

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration (강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가)

  • Kim, Sangrae;Kim, Dongkeun;Mun, Jungsoo;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.

Estimation of Runoff Characteristics of Nonpoint Pollutant Source in Railroad Area (철도지역의 비점오염원 유출특성)

  • Lee, Chun Sik;Seo, Gyu Tae;Yoon, Cho Hee;Kwon, Heon Gak;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.511-520
    • /
    • 2014
  • The MFFn(Mass first flush), EMCs(Event mean concentrations) and runoff loads were analyzed for various rainy events(monitoring data from 2011 to 2012) in transportation area(rail road in station). The pollutant EMCs by volume of stormwater runoff showed the BOD5 9.6 mg/L, COD 29.9 mg/L, SS 16.7 mg/L, T-N 3.271 mg/L, T-P 0.269 mg/L in the transportation areas(Railroad in station). The average pollutant loading by unit area of stormwater runoff showed the BOD5 $27.26kg/km^2$, COD $92.55kg/km^2$, SS $50.35kg/km^2$, T-N $10.13kg/km^2$ and T-P $10.13kg/km^2$ in the transportation areas. Estimated NCL-curve(Normalized cumulated-curve) was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good.

Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design - (이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -)

  • Cho, Kang Woo;Kim, Tae Gyun;Lee, Byung Ha;Lee, Seul Bi;Song, Kyung Guen;Ahn, Kyu Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.599-608
    • /
    • 2009
  • This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Analysis of Unit Pollution Load on Highway runoff (고속도로 노면 강우유출 오염부하 원단위 산정)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • Impervious surface increase due to urbanization, one of the leading causes of pavement increased the runoff coefficient, peak flow, and reducing the infiltration flow and thereby causing flooding and river erosion is occurring in aquatic ecosystems are known to impair. This study aimed to classify use type of detailed land into the road, reststop, tollgates and etc. focused on major domestic highways, to understand the characteristics of rainfall runoff pollutants and to calculate applicable unit pollution load. Because of high runoff coefficient and short travel time to drainage. first flush occurred clearly. Average EMCs of runoff in the highway was investigated as TSS 108.47 mg / L, COD 28.16 mg / L, BOD 13.61 mg / L, TN 6.38 mg / L, TP 0.03 mg / L, Cu 118.17 ${\mu}g$ / L, Pb 345.3 ${\mu}g$ / L, Zn 349.47 ${\mu}g$ / L. Unit pollution loads calculated by detailed land use area of highways based on average annual rainfall, EMCs, applicable basin areas and etc. were 46.6 kg/km2/day of BOD, 1.4 kg/km2/day of TP, 8.81 kg / km2/day of TN and these were BOD 50.8%, TP 66.7%, TN 64.4%in comparison of the unit pollution loads which applies fallow land standards of the TMDL(Total Maximum Daily Load). It was considered that discharged loads can be excessively calculated in case highway non-point management plans based on unit pollution load of the current land standard.

Assessment of Metal Pollution of Road-Deposited Sediments and Marine Sediments Around Gwangyang Bay, Korea (광양만 내 도로축적퇴적물 및 해양퇴적물의 금속 오염 평가)

  • JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 2020
  • In this study, heavy metal in road-deposited sediments (RDS) and marine sediment around Gwangyang Bay area have been investigated to assess the pollution status of metals and to understand the environmental impact of RDS as a potential source of metal pollution. Zn concentration for <63 ㎛ size fraction was the highest (2,982 mg/kg), followed by Cr, Ni, Pb, Cu, As, Cd, and Hg. Metal concentrations in RDS increased with decreasing particle size and relatively higher concentrations were observed around the metal waste and recycling facilities. For particle size in RDS smaller than 125 ㎛, EF values indicated that Zn was very high enrichment and Cr, Cd, Pb were significant enrichment. The concentrations of metals in marine sediments were mostly below the TEL value of sediment quality guidelines of Korea. However, the Zn concentrations has increased by 30~40% compared to 2010 year. The amounts of Zn, Cd and Pb in less than 125 ㎛ fraction where heavy metals can be easily transported by stormwater runoff accounted for 54% of the total RDS. The study area was greatly affected by Zn pollution due to corrosion of Zn plating materials by traffic activity as well as artificial activities related to the container logistics at Gwangyang container terminal. The fine particles of RDS are not only easily resuspended by wind and vehicle movement, but are also transported to the surrounding environments by runoff. Therefore, further research is needed on the adverse effects on the environment and ecosystem.

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Road Drainage Facility Design Methods apply on the Hydraulic and Hydrologic Analysis (수리·수문기술을 적용한 도로 배수시설 설계 기법)

  • Lee, Man-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.419-430
    • /
    • 2012
  • Due to the calculation difficulty on the hydraulic and hydrologic analysis for road drainage facilities design, these analysis techniques are not applicable. This study's result are development of minutely rainfall-intensity equation suitable for road drainage area, verification of rainfall-runoff model joining kinematic wave theory for road drainage area, computational model based GUI for road surface drainage facilities spacing and culvert's size decision and various road drainage channel design. Applicable test on the developed model is proceed, result that in case of road surface dranage facilities spacing is narrower 6~65% than present spacing calculation method, in other case of road cross dranage facilities size is bigger 6~140% than present size decision method.

SS and COD Runoff from a Rice Field Watershed during Storm Events in the Growing and Non-growing Seasons (강우시 영농기와 비영농기의 광역논에서의 부유물질 (SS)과 COD의 유출특성)

  • Lee, Jeong Beom;Lee, Jae Yong;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this research was to investigate runoff characteristics of suspended solid (SS) and chemical oxygen demand (COD) from a paddy field watershed during storm events in the growing and non-growing seasons. Average of event mean concentration (EMC) of pollutants were 56.9 mg/L for SS and 23.9 mg/L for COD in the non-growing season and 50.3 mg/L for SS and 11.9 mg/L for COD in the growing season. The average EMC of SS in the study area was much lower than that in the uplands irrespective of cultivation, suggesting that paddy fields control soil erosion. This may be because flooding and wet soil in the growing season, and rice straw residue and stubble on the topsoil in the non-growing season reduce soil erosion. The changing tillage practice from fall tillage to spring tillage avoids soil erosion due to shortening of the tilled fallow period. However, the average EMC of COD in the non-growing season was about twice as much that in the growing season likely due to the runoff of organics like rice straw residues. The relationship between SS and COD loads and stormwater runoff volume was expressed by power function. The exponent for SS was higher than that for COD, suggesting that SS load increased with stormflow runoff more than COD load did. The mean SS and COD loads per storm during the non-growing season were much lower than those in the growing season, and therefore non-point source pollution in the growing season should be managed well.

Stormwater Runoff Characteristics of Non-point Source Pollutants according to Landuse of Urban Area (도시지역 토지이용에 따른 비점원 오염물질 유출특성)

  • Jeong, Dong-Hwan;Shin, Dongseok;Rhew, Doughee;Jung, Dongil
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.525-532
    • /
    • 2007
  • In order to establish and implement the total maximum daily load (TMDL) management plan in Korea, it is necessary to set the source units and calculate discharge loads for non-point source pollutants such as BOD, COD, SS, TN and TP. This study analysed the corelation between stormwater runoff characteristics and event mean concentrations (EMCs) of non-point source pollutants. As the result of the corelation analysis, we knew that all the antecedent dry days (ADD) and the rainfall correlated lowly with non-point source pollutants in the urban areas such as resident area, industrial area, business area, road area and parking area. Therefore, it is necessary to get all samples from stormwater starting point to stormwater ending point and standardize the sampling method of stormwater in order to obtain more accurate EMCs for landuse.