• Title/Summary/Keyword: Road Geometry

Search Result 159, Processing Time 0.023 seconds

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.

A Research on the Characteristics of EEG Information on Drive Behavior (운전거동에 따른 운전자 뇌파특성에 관한 연구)

  • Oh, Dong-Hun;Namgung, Moon;Park, Hee-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.23-29
    • /
    • 2015
  • In this study, human is the subject of driving a car, the actual EEG is a biological information in a number of reactions that are displayed while driving the vehicle by using a measuring device, occurs during travel of the road EEG to be collected, number of experiments the collected material on the basis of changes associated with running time, extracts the factors such as changes due to road geometry, and analysis was performed. The required changes in the EEG occurring during traveling experiment analysis alpha (${\alpha}$) waves, beta (${\beta}$) wave, after the primary extraction in the form of gamma (${\gamma}$) faction, the brain wave frequency of the entire period of the experiment change rate extracts, to calculate the change in frequency in response to EEG characteristics by applying the regression model to observe a learning effect in response to an increase in the number of experiments, as a result, depending on the number of experiments, EEG changes due to individual differences. The show, by repeatedly driving a section like this, it was possible to verify that comfortably travels driver accustomed in accordance with the stored road geometry and signal, safety facilities.

Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model (입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가)

  • Park Eui-Seob;Ryu Chang-Ha;Bae Seong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF

The Activation Plan of Variable Speed Control of Considering Urban Freeway Continuos Traffic Characteristics (In Busan Metropolitan City) (도시고속도로 연속류의 교통특성을 고려한 가변속도제어 활성화 방안 - 부산광역시를 중심으로 -)

  • Jeong, Yong-Hwa;Choi, Yang-Won;Lim, Chang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.627-635
    • /
    • 2014
  • Currently the highest speed limit on the road traffic congestion or because you can not cope with climate change to cause a traffic accident may be a factor. According to the Road Traffic Act as well as 20% to 50% in case of inclement weather, but the driver must slow speed left to the judgment of the difficulties, and to slow the vehicle and the relative velocity between the vehicle does not run longer be a big influence on the environment and safety. Thus, variable speed control for drivers on the road, specify the appropriate maximum speed limit in bad weather It keeps motorists slowed the run rate to prevent accidents or reduce the severity of accident damage is expected to be possible. The purpose of this study is the frequent traffic accidents Continuous Busan (City Freeway) around the variable speed control in the appropriate sections so that it can be done by analyzing the characteristics of traffic accidents were the severity of the accident. Highway and urban environment, the geometry of the structure because it has a lot of Curved planar point compared to wet and dry road surfaces by simulated rain wet had bom the more the speed the greater the risk of an accident was the result. Based on these results, the primary section, first urban highway tunnel, near the lamp, near Toll Plaza, near binary Outlet after considering various factors such as speed reduction is needed in the first period by conducting awareness and recognize the need for the participation of the driver and the future city installation and operation of highways in all sectors is expected to be expanded.

Circular Intersection Accident Models of Day and Nighttime by Gender (성별에 따른 주·야간 원형교차로 사고모형)

  • Cho, Ah Hae;Kim, Tae Yang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.143-151
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop models of accidents occurring at circular intersections related to the time of day and night and driver gender, and to provide countermeasures for safer circular intersections. METHODS : Seventy intersections built before 2008 were surveyed for inclusion in the modeling. Traffic accident data from 2008 to 2014 were collected from the TAAS data set of the Road Traffic Authority. Sixteen variables explaining the accidents including geometry and traffic volume were selected from the literature and seven multiple linear regression models were developed using SPSS 20.0. RESULTS : First, the null hypotheses, that the number of traffic accidents are not related to driver gender or time of day, were rejected at a 5% level of significance. Second, seven statistically significant accident models with $R^2$ value of 0.643-0.890 were developed. Third, in daytime models by gender, when the right-turn-only lane was selected as the common variable, the number of lanes, presence of driveways and speed humps, diagrammatic exit destination sign, and total entering traffic volume were evaluated as specific variables. Finally, in nighttime models by gender, when the diagrammatic exit destination sign was selected as the common variable, total entering traffic volume, presence of right-turn-only lanes, number of circulatory road way lanes, and presence of splitter islands and driveways were identified as specific variables. CONCLUSIONS:This study developed seven accident models and analyzed the common and specific variables by time of day and gender. The results suggest approaches to providing countermeasures for safer circular intersections.

An Investigation for Driving Behavior on the Exit-ramp Terminal in Urban Underground Roads Using a Driving Simulator (주행 시뮬레이터를 활용한 도심 지하도로 유출연결로 접속부 주행행태 분석)

  • Jeong, Seungwon;Song, Minsoo;Hwang, Sooncheon;Lee, Dongmin;Kwon, Wantaeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.123-140
    • /
    • 2022
  • Even though driving behaviors in underground roads can be significantly different from ground roads, existing underground roads follow the design guidelines of ground roads. In this context, this study investigates the driving behaviors of the exit-ramp terminal of urban underground roads using a driving simulator. Virtual driving experiments were performed by analyzing scenarios between the underground and ground road environments. The experiments' driving behavior data for each geometry section are compared and validated through a statistical significance test. This test showed that the speed in the underground road environment is relatively low, and the LPM tends to move away from the adjacent tunnel wall. Based on these findings, this study suggests implications and feasible solutions for improving driver's safety in the exit-ramp terminal of the underground roads.

Analyses on the Impact of Plastic Deformation on Change of the Road Surface Condition (소성변형 정도를 고려한 시간전개에 따른 노면상태 변화 분석)

  • SON, Young Tae;PARK, Sang-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.216-228
    • /
    • 2018
  • In this study analyzed the ponding changing of plastic deformation section follwed time development to apply weather, geometry and traffic data in additon to time development to improve road management service and safety of roads during or after rain. After We selected an 8.3km section of old national highway the Seongnam-Janghowon section and created a three-demensional surface of terrain through the numerical transformantion of design drawing data, with reflection the linear data of the same coordinate system in order to describe more realistic roads, we design additional structures with shading above roads. The altitude and azimuth of the sun were calculated and set based on the longitude and latitude data of the survey line for the analysis of the sun rate, and the daylight impact zone was visualized by setting the shaded time to an interval of 1 hour and the shade rate of the corresponding section. In addition, the evaporation volume calculated from weather data such as temperature, humidity, radiant energy, and road temperature analyzes together, it will use the way of a safer and more efficient road management as grasping the ponding changing more efficent in time development.

Development of Speed Limits Estimation Model and Analysis of Effects in Urban Roads (도시부도로 제한속도 산정모형 개발 및 효과분석 연구)

  • Kang, Soon Yang;Lee, Soo Beom;Lim, Joon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.132-146
    • /
    • 2017
  • Appropriate speed limits at a reasonable level in urban roads are highly important factors for efficient and safe movement. Thus, it is greatly necessary to develop the objective models or methodology based on engineering study considering factors such as traffic accident rates, roadside development levels, and roadway geometry characteristics etc. The purpose of this study is to develop the estimate model of appropriate speed limits at each road sections in urban roads using traffic information big data and field specific data and to review the effects of accident decrease. In this study, the estimate method of appropriate speed limits in directional two or more lanes of urban roads is reflecting features of actual variables in a form of adjustment factor on the basis of the maximum statutory speed limits. As a result of investigating and testing influential variables, the main variables to affect the operating speed are the function of road, the existence of median, the width of lane, the number of traffic entrance/exit path and the number of traffic signal or nonsignal at intersection and crosswalk. As a result of testing this model, when the differences are bigger between the real operating speed and the recommended speed limits using model developed in this study, the accident rate generally turns out to be higher. In case of using the model proposed in this study, it means accident rate can be lower. When the result of this study is applied, the speed limits of directional two or more lane roads in Seoul appears about 11km/h lower than the current speed limits. The decrease of average operating speed caused by the decrease of speed limits is 2.8km/h, and the decrease effect of whole accidents according to the decrease of speed is 18% at research road. In case that accident severity is considered, the accident decrease effects are expected to 17~24% in fatalities, 11~17% in seriously injured road user, 6~9% in slightly injured road user, 5~6% in property damage only accidents.

The Effects of Control Takeover Request Modality of Automated Vehicle and Road Type on Driver's Takeover Time and Mental Workload (자율주행 차량의 제어권 인수요구 정보양상과 도로 형태에 따른 운전자의 제어권 인수시간과 정신적 작업부하 차이)

  • Nam-Kyung Yun;Jaesik Lee
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.51-70
    • /
    • 2023
  • This study employed driving simulation to examine how takeover request (TOR) information modalities (visual, auditory, and visual + auditory) in Level-3 automated vehicles, and road types (straight and curved) influence the driver's control takeover time (TOT) and mental workload, assessed through subjective workload and heart rate variations. The findings reveal several key points. First, visual TOR resulted in the quickest TOT, while auditory TOR led to the longest. Second, TOT was considerably slower on curved roads compared to straight roads, with the greatest difference observed under the auditory TOR condition. Third, the auditory TOR condition generally induced lower subjective workload and heart rate variability than the visual or visual + auditory conditions. Finally, significant heart rate changes were predominantly observed in curved road conditions. These outcomes indicate that TOT and mental workload levels in drivers are influenced by both the TOR modality and road geometry. Notably, a faster TOT is associated with increased mental workload.