• Title/Summary/Keyword: Road Geometric Condition

Search Result 24, Processing Time 0.019 seconds

A Comparative Study about Industrial Structure Feature between TL Carriers and LTL Carriers (구역화물운송업과 노선화물운송업의 산업구조 특성 비교)

  • 민승기
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.101-114
    • /
    • 2001
  • Transportation enterprises should maintain constant and qualitative operation. Thus, in short period, transportation enterprises don't change supply in accordance with demand. In the result, transportation enterprises don't reduce operation in spite of management deficit at will. In freight transportation type, less-than-truckload(LTL) has more relation with above transportation feature than truckload(TL) does. Because freight transportation supply of TL is more flexible than that of LTL in correspondence of freight transportation demand. Relating to above mention, it appears that shortage of road and freight terminal of LTL is larger than that of TL. Especially in road and freight terminal comparison, shortage of freight terminal is larger than that of road. Shortage of road is the largest in 1990, and improved after-ward. But shortage of freight terminal is serious lately. So freight terminal needs more expansion than road, and shows better investment condition than road. Freight terminal expansion brings road expansion in LTL, on the contrary, freight terminal expansion substitutes freight terminal for road in TL. In transportation revenue, freight terminal's contribution to LTL is larger than that to TL. However, when we adjust quasi-fixed factor - road and freight terminal - to optimal level in the long run, in TL, diseconomies of scale becomes large, but in LTL, economies of scale becomes large. Consequently, it is necessary for TL to make counterplans to activate management of small size enterprises and owner drivers. And LTL should make use of economies of scale by solving the problem, such as nonprofit route, excess of rental freight handling of office, insufficiency of freight terminal, shortage of driver, and unpreparedness of freight insurance.

  • PDF

Comparative Analysis of Operational Effectiveness Related to the Conversion of Rotary to Roundabout in Korea (국내 로터리의 회전교차로 전환에 따른 운영효과 비교분석)

  • Lim, Jin-Kang;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • This study deals with the effectiveness of roundabout. The goal is to comparatively analyze the operational effectiveness related to the conversion of rotary to roundabout in Korea. In pursuing the above, this study gives particular attentions to investigating the existing 20 rotaries and developing the networks of before-and-after improvement using VISSIM, and comparatively analyzing the effectiveness. The domestic rotaries were analyzed to need many improvements of geometric structure for the effective operation of roundabout. The main results are as follow. First, when the present condition of traffic volume were applied, the operational effect of rotary were evaluated to be better than roundabout, but the difference analyzed to be small. Second, the average delay per vehicle in the rotaries of urban area were analyzed to rapidly increase according to the growth of traffic volume. Finally, the average speed of roundabout were evaluated to be less (about 10km/h) than that of rotary, because the traffic volume of rural area were less than that of urban area.

Theoretical Review on the Vertical Geometric Design Standards for High-speed Roadway (초고속 주행환경에서의 종단경사 설계기준에 관한 기초연구)

  • Song, Mintae;Kang, Hoguen;Kim, Heungrae;Lee, Euijoon;Shin, Joonsoo;Kim, Jongwon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.177-186
    • /
    • 2013
  • PURPOSES: The purpose of this study theoretically reviews vertical grade deriving process in super high speed environment and compares overseas design criteria with Domestic Standardization also draws suitable vertical grade design criteria of high standard for Domestic Circumstances in Korea. METHODS : By researching domestic vehicle registration status, calculating typical vehicle, using Vissim which is traffic simulation program, Speed-distance curve of the vehicle is derived under each design speed condition. Through Speed-distance curve, estimating critical length of grade and considering critical length of grade, maximum longitudinal incline is proposed. RESULTS : The result of domestic vehicle registration status, the typical vehicle for deriving vertical grade is calculated based on gravity horsepower ratio 200 lb/hp. For calculating critical length of grade, according to change speed of uphill entry, speed-distance curve is derived by using Vissim. Critical length of grade is calculated based on design speed 20 km/h criteria which is point of retardation. Estimated critical length of grade is 808 m and based on this result, maximum longitudinal incline was confirmed in the design speed between 130km/h to 140km/h. CONCLUSIONS: The case of the typical vehicle(truck) which is gravity horsepower ratio 200 lb/hp, maximum longitudinal incline 2% is desirable at the super high speed environment in the design speed between 130km/h to 140km/h.

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.