• 제목/요약/키워드: Road Geometric Condition

검색결과 24건 처리시간 0.022초

VF 모델링을 이용한 주행차량의 진동에 대한 도로 계측오차 보정 알고리듬 (A Measurement Error Correction Algorithm of Road Structure for Traveling Vehicle's Fluctuation Using VF Modeling)

  • 정용배;김정현;서경호;김태효
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.190-200
    • /
    • 2005
  • In this paper, the image modelling of road's lane markings is established using view frustum(VF) modeling. This algorithm also involve the real time processing of the 3D position coordinate and the distance data from the camera to the points on the 3D world coordinate by the camera calibration. In order to reduce their measurement error, an useful algorithm for which analyze the geometric variations clue to traveling vehicle's fluctuation using VF model is proposed. In experiments, without correction, for instance, the $0.4^{\circ}$ of pitching rotation gives the error of $0.4^{\sim}0.6m$ at the distance of 10m, but the more far distance cause exponentially the more error. We confirmed that this algorithm can be reduced less than 0.1m of error at the same condition.

  • PDF

V.F. 모델링을 이용한 주행차량의 진동에 대한 도로영상의 계측오차 보정 알고리듬 (A Measurement Error Correction Algorithm of Road Image for Traveling Vehicle's Fluctuation Using V.F. Modeling)

  • 김태효;서경호
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.824-833
    • /
    • 2006
  • In this paper, the image modelling of road's lane markings is established using view frustum(VF) model. From this model, a measurement system of lane markings and obstacles is proposed. The system also involve the real time processing of the 3D position coordinate and the distance data from the camera to the points on the 3D world coordinate by virtue of the camera calibration. In order to reduce their measurement error, an useful algorithm for which analyze the geometric variations due to traveling vehicle's fluctuation using VF model is proposed. In experiments, without correction, for instance, the $0.4^{\circ}$ of pitching rotation gives the error of $0.4{\sim}0.6m$ at the distance of 10m, but the more far distance cause exponentially the more error. We con finned that this algorithm can be reduced less than 0.1m of error at the same condition.

평탄부 선로에서 철도소음의 전파예측에 관한 연구 (A Study on the Predition of Train Noise Propagation from a Level Railroad)

  • 주진수;박병전
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.187-194
    • /
    • 1998
  • In order to predict the train noise propagation from a level railroad, this paper presents the model of train noise source and the prediction model based on the results by using the sound intensity method. The prediction model gives the effects of geometric attenuation, ground attenuation, and barrier attenuation of noise. There are several principal assumption in developing model: (a) the train noise is primarily rolling noise; (b) the rail head and wheels are in good condition; (c) the height of source is 10cm above track; (d) the directivity pattern of train noise sources is a dipole source. Calculated results based on this model are compared with available field data and good agreement has been obtained.

  • PDF

상용 ESC 평가 시뮬레이션을 위한 국내 고속도로 진출입로 연구 (A Study on the Highway Ramp Section for Simulation of Commercial Vehicle ESC Assesment)

  • 이홍국;박중영;장경진;서이정;유송민
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.23-28
    • /
    • 2014
  • Commercial vehicle ESC assessment for curvature road was conducted. The previous study of ESC activation condition for losing controllability utilizing the test protocols of double lane change and sine with dwell method was conducted without considering the geometric complexity of roadway design. Since critical rollover accidents were frequently observed in the exit ramp zone, variety of curve, slope and bank have been added for analysis conditions. Detailed feature of the ramp including location, dimension and design characteristics have been analyzed from the typical trumpet type ramp design. Analyzing accident data from 2008, two specific ramps have been selected due to their complexity in design and severity in steering operation.

Optimization of Earthwork Operation for Energy-saving using Discrete Event Simulation

  • Yi, Chang-Yong;Lee, Dong-Eun
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.537-539
    • /
    • 2015
  • considerate operation is a major issue in the equipment-intensive operation. Identifying an optimal equipment combination is important to achieve low-energy operations. An Earthwork operation planning system, which measures the energy consumption of construction operations by taking into account construction equipments' engineering attributes (e.g., weight, capacity, energy consumption rate, etc.) and operation conditions (e.g., road condition, attributes of materials to be moved, geometric information, etc.), is essential to achieve the low-energy consumption. This study develops an automated computerized system which identifies an optimal earthmoving equipment fleet minimizing the energy consumption. The system imports a standard template of earthmoving operation model and compares numerous scenarios using alternative equipment allocation plans. It finds the fleet that minimizes the energy consumption by enumerating all cases using sensitivity analysis. A case study is presented to verify the validity of the system.

  • PDF

계층 이항 로지스틱모형에 의한 고속도로 교통사고 심각도 분석 (Analysis of Traffic Crash Severity on Freeway Using Hierarchical Binomial Logistic Model)

  • 문승라;이영인
    • 한국도로학회논문집
    • /
    • 제13권4호
    • /
    • pp.199-209
    • /
    • 2011
  • 교통사고발생시 사고 심각도에 영향을 미치는 요인과 그 관계를 이해하는 것은 기하구조나 환경 측면에서 교통사고 발생을 예방하고 운전자와 사고 차량의 특성을 이해하는데 도움을 준다. 본 연구에서는 계층 이항 로지스틱모형에 의해 고속도로 교통사고 심각도에 영향을 미치는 요인을 파악하고 영향변수 간 차이를 나타내는 비교위험도(odds ratio)를 도출하였다. 사고 심각도는 인명피해와 차량피해로 구분하여 사망사고모형과 차량완파사고모형을 구축하였다, 종속변수는 사망자 발생과 완파차량 발생 여부이며, 각각 사고-탑승자, 사고-차량의 2수준 계층구조를 적용하였다. 추정 결과 설명변수의 고정효과는 두 모형이 유사한 결과를 보이나 종속변수의 속성에 따라 차별화된 결과를 나타내기도 하였다. 본선과 진출입부에서의 사고가 가장 위험하며, 중앙선 침범과 통행위반, 과속 사고의 상해나 차량 파손 위험도가 높고, 충돌사고와 추돌사고, 화재 사고의 피해가 크다. 사고 심각도는 노면 상태나 시야 조건 등 외부환경에 영향을 받으나 기하구조 조건은 관련이 없다.

도시부 자율주행셔틀 실증을 위한 운행설계영역 분석: 안양시를 중심으로 (Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road)

  • 김형주;임경일;김재환;손웅비
    • 한국ITS학회 논문지
    • /
    • 제19권2호
    • /
    • pp.135-148
    • /
    • 2020
  • 현재 진행되고 있는 자율주행 관련 기술 발전은 실제 도로를 사용한 자율주행 테스트 시 다양한 안전사고가 발생할 가능성이 존재한다. 특히 자율주행자동차법 시행으로 실제 도로에서의 자율주행 실증은 증가할 것이며, 안전사고 예방을 위해 국내 도로환경에 적합한 운행설계영역에 대한 연구가 요구된다. 따라서 본 연구는 도심부 자율주행셔틀 실증을 위한 운행설계영역을 정의하고, 안양시 도심부도로를 중심으로 자율주행 운행 가능여부 등의 운행설계영역 평가를 실시한다. 본 연구의 자율주행 운행설계영역은 국내의 도로환경과 안전을 우선적으로 고려하였으며, 기하구조적 요인, 운영적 요인, 환경적 요인을 포함한다. 분석결과 노드기준에서는 노드유형 및 신호-통신 여부를 통해서 30개 노드에서 자율주행셔틀 실증이 가능한 것으로 분석되었다. 링크기준에서는 오전첨두(8-9시) 42개, 비첨두(12-13시) 39개, 그리고 오후첨두(18-19시) 40개 방향별 링크구간에서 자율주행 제한으로 분석되었다. 본 연구결과는 향후 자율주행 실증테스트가 이루어지는 도심부도로에서 사전 안전성 평가의 수범사례로 활용될 가치가 있다.

유한요소법을 이용한 MR 쇽 업소버의 최적설계 (Optimal Design of MR Shock Absorbers Using Finite Element Method)

  • 성금길;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.375-380
    • /
    • 2007
  • This paper presents optimal design of controllable magnetorheological (MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method (FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

  • PDF

회전교통량 분산식 임계 교차로의 운영 및 환경 효과 분석 (Evaluating the Effectiveness of Unconventional Intersections on Operation and Environment)

  • 문재필;김회룡;이석기;정준화
    • 한국도로학회논문집
    • /
    • 제16권3호
    • /
    • pp.75-84
    • /
    • 2014
  • PURPOSES : Traffic congestions which occur in the intersections of arterials lead to mobility and environment problem, and then traffic agencies and engineers have been struggling for mitigating congestions with greenhouse gas emissions. As an alternative of solving theses problems, this study is to introduce a low-cost and high-effectiveness countermeasure as unconventional intersections which are successfully in operation in U.S.. The main feature of unconventional intersections is to reroute turning movement on an approach to other approach, which consequently more green time is available for the progression of through traffic. Due to improved progression, this unique geometric design contributes to reduce delays with greenhouse gas emission and provides a viable alternative to interchanges. This study is to evaluate the potential operation and environment benefits of unconventional intersections. METHODS : This study used the VISSIM model with Synchro and EnViVer. Synchro is to optimize signal phases and EnViVer model to estimate the amount of greenhouse gas emissions by each condition. RESULTS : The result shows that unconventional intersections lead to increase the capacity and to reduce greenhouse gas emissions, compared to existing intersections. CONCLUSIONS : Unconventional intersections have the ability to positively impact operations and environments as a low-cost and high-effectiveness countermeasure.

자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계 (Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.