• Title/Summary/Keyword: Riverbed sedimentation

Search Result 10, Processing Time 0.019 seconds

Estimation of Sediment Transport and Long-term Prediction of Riverbed Elevation Changes in Yangon River (양곤강 퇴적물 이동 및 장기 하상변화율 측정)

  • Htet, Salaing Shine;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.450-457
    • /
    • 2019
  • Sedimentation is a common problem for river ports. But its intensity depends on the rate of sedimentation, channel shape and size, hydrodynamic behavior of the river and the importance of the port. High sedimentation rate in Yangon River has become one major issue for Myanmar as her largest port is located on the Yangon riverbank. As a result of the high sedimentation rate, shallow water area near the confluence of Yangon River, Pazundaung Creek, and Bago River keeps blocking the navigation channel to the Yangon Port, which also limits the size of vessel calling to Yangon Port. Therefore, studies to understand sediment transport process in Yangon River are required because the economic development of Myanmar highly relies on the Yangon Port. This paper aims to calculate the sediment transport and to predict the riverbed elevation changes in Yangon River by using Bagnold (1966) theory. Calculation result shows that huge difference can be found in the bed load transport between the rainy season and dry season in Yangon River, and thus the sedimentation problem would become more severe in the dry season when the transported sediments are reduced. The estimated sedimentation rate in dry season indicates that the rate of riverbed level rise near the Yangon Port area is about 0.063 m per year, which would lead to approximately 3.15 m rise in the riverbed level in next 50 yrs, considering the same workload of dredging to maintain the navigation channel.

Population Dynamics of Salix nipponica and S. koreensis during the Riverbed Sedimentation in the Wetland of the Nam-River (남강 습지에서 하상의 퇴적에 따른 선버들 (Salix nipponica)과 버들나무 (S. koreensis)의 개체군 동태)

  • Lee, Pal-Hong;Son, Sung-Gon;Kim, Cheol-Soo;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.95-107
    • /
    • 2000
  • The population dynamics of Salix nipponica and S. koreensis and the sediment factors were investigated in the wetland of the Nam-River. Chinju. Gyongsangnam-do, Korea. Each population of S. nipponica and S. koreensis was divided into four stages during the riverbed sedimentation: the first stage of establishment by S. nipponica, the second stage of coexistence by S, nipponica and S. koreensis, the third stage of dominated by S. koreensis, while S. nipponica was decreased during the increase of the water table in the sediment, and the fourth stage of the climax by S. koreensis, while S. nipponica almost died when the water table was twice to the third stage. Tree height, age, and density of S. nipponica were decreased, while S. koreensis increased along the sedimentation. And the composition of understory species showed no differences in each stage. The water table and the clay content affected on the distribution of Salix spp. in each stage, according to the PCA. The water table and the clay content increased during the sedimentation, while the other factors were almost the same.

  • PDF

A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models (수치모형을 이용한 하상변동 시공간 평가 기법 개발 연구)

  • Kim, Chul-Moon;Lee, Jeong-Ju;Choi, Su-Won;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.975-990
    • /
    • 2011
  • In this study, to develop an assessment method for spatio-temporal riverbed changes, a 1-dimensional model (HEC-RAS) and a 2-dimensional model (CCHE2D) were built and applied. As for the analysis of a riverbed's long-term change in a real stream, three new assessment methods were developed, which are called the "Sediment section cumulative curve", "Sediment section moment", and "Sediment probability distribution function." These methods were used to assess the characteristics of riverbed changes using a consistent valuation standard and to understand changes in quantities intuitively. From the results of this study, sediment characteristics of cross sections can be detected effectively by applying the "Sediment section cumulative curve" method to determine whether there is any sedimentation or erosion in total emission. The amount of sedimentation or erosion occurring in the right or left banks, which divided by center column, could be presented as one criterion by applying the "Sediment section moment" method. This approach could be utilized as an indicator for sediment predictions. Spatio-temporal sediment variables can be presented quantitatively by determining the mean and uncertain boundaries through the "Sediment probability distribution function", and finally, the results can be illustrated for each cross section to provide intuitive recognition.

Analysis of Hydraulic Impacts due to Sudden Enlargement of Kyungpo-cheon River Channel (경포천 하도 급확대에 따른 수리학적 영향분석)

  • Choi, Jong-Ho;Jung, Tae-Jung;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • The enlargement and reduction of river channels can not only change the flow of water but also alter sedimentation patterns, thus hindering smooth flood conveyance. Accordingly, this study aims to analyze the effects of the sudden enlargement of river channels on changes in the riverbed and river flow. For this purpose, as part of the "Hometown River" Construction Project, this study examined the local river Kyungpo-cheon, which a section of the river channel was widened by at least two- to three-fold, using RMA-2 and SED-2D models to simulate the changes in flow characteristics and riverbed variation due to the widening of the channel. The results of the study indicated that widening the Kyungpo -cheon river channel secured its dimensional stability in comparison to before widening. however, due to a flood frequency of more than once per year, future maintenance and management will be costly and time-consuming.

Analysis of Flow and Bed Change on Hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman (CCHE2D를 이용한 수리구조물에 의한 흐름 및 하상변동 연구 -창녕함안보를 중심으로-)

  • Ahn, Jung Min;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.707-717
    • /
    • 2013
  • Channel-bed of erosion and sedimentation, where eroded bed and bank materials re-deposit through the action of flow, is a natural phenomenon in alluvial systems. Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Changnyong-Haman multi-function weir in Nakdong river) has been analyzed in order to examine the effect of hydraulic structure on local bed change. A 2D numerical model (CCHE-2D) has been implemented to simulate the sedimentation and erosion over a reach (10 km) including the weir. For the calibration and verification of the model, the rainfall data from a real event (Typoon 'Maemi' in 2003) has been used for flow and stage simulation. And the simulated results show a good agreement with the observed data for whole domain. From the result, it was found that the installation and operation of weir can aggravate the local bed change caused from the flow field change and resulting redistribution of sediment.

An Assessment of Flow Characteristic and Riverbed Change by Construction of Hydraulic Structure (수리구조물 설치에 따른 흐름특성 및 하상변동 연구)

  • Kwak, Jaewon;Jin, Hwansuk;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.542-550
    • /
    • 2017
  • The estimations of flow characteristics and river-bed erosion or sedimentation are very important for hydraulic structure design, floodplain management, and especially, river management. The objective of the study is therefore to estimate the change of flow characteristics and river-bed change due to a hydraulic structure construction. With 11.65 km study area of the Geum River which are located in downstream of Daecheong Dam, flow characteristics and river-bed change were estimated based on the RMA2 and SED2D model. As the result of the study, the increase of river-bed sedimentation in upstream and river-bed erosion in downstream were occurred by the construction of hydraulic structure.

Analysis of Flow and Bed Changes by Hydraulic Structure using CCHE2D: Focusing on Gangjeong-Goryeong Weir (수리구조물에 의한 흐름 및 하상변동 연구- 강정고령보를 중심으로 -)

  • Ahn, Jung-Min;Jung, Kang-Young;Shin, Dongseok;Lyu, Siwan
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Gangjeong-Goryong multi-function weir in the Nakdong river) was analyzed in order to examine the effect of hydraulic structures on local bed change. A 2D numerical model (CCHE-2D) was employed to simulate the sedimentation and erosion over a reach (25 km) including the weir. For the calibration and verification of the model, rainfall data from a real event (Typoon 'Ewiniar' in 2006) were used for flow and stage simulation. And the simulated results show a good agreement with the observed data for the whole domain. From the result, it was found that the installation and operation of the weir could aggravate bed changes by typhoon between movable weirs, and which resulted in redistribution of sediment.

Analysis on the sediment sluicing efficiency by variation of operation water surface elevation at flood season (홍수기 운영수위 변화에 따른 배사 효율 분석)

  • Jeong, Anchul;Kim, Seongwon;Kim, Minseok;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2016
  • In general, efficient operation of sediment sluicing is important in economical aspect. In this study, the efficiency of sediment sluicing by various operation at water surface elevation on multi-functional weirs were analyzed using Nays2DH, and we focused on the Dalsung weir at Nakdong river. The results of this study shows that, the same number of flushing channels and water gates were developed due to sediment sluicing, and sediment deposition occurred in upstream region of flushing channels. Also, the sediment sluicing efficiency increased by approximately 4.6% and sedimentation decreased by approximately 4.5% at EL. 14.5 m for operations on water surface elevation exceeding EL. 14.0 m. The mitigation of reservoir sedimentation and extension of maintenance dredging period are possible if the variation of sediment sluicing efficiency in various operation at water surface elevation during flood season are considered.

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.