• Title/Summary/Keyword: Riverbed filtration

Search Result 18, Processing Time 0.024 seconds

Development of Technology on Water Thermal Energy Utilization of Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상) 열자원 활용 기술 개발)

  • Kim, Hyoung-Soo;Seo, Min-Woo;Jung, Woo-Sung;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Geothermal energy becomes to be one of the promising energy sources. In this study, technology using water thermal energy from riverbank filtration system(including alluvial and riverbed deposit) is reviewed and checked as an energy resources. The objects of this study are (1) long-term monitoring of alluvial and riverbed sites, (2) preliminary design of cooling and heating system at riverbank filtration facility, and (3) calculation of potential groundwater heat energy, including riverbank filtration system. Measuring data of alluvial and riverbank filtration show slight fluctuations comparing to temperature of atmospheric air which indicates that groundwater obtained from the riverbank filtration system have a sufficient potential as a source of cooling and heating energy.

  • PDF

A study on pollutants removal characteristics of domestic riverbed filtration and riverbank filtration intake facilities (국내 복류수 및 강변여과수 취수시설의 오염물질 제거특성에 관한 연구)

  • Chan-woo Jeong;Sun-ick Lee;Sung-woo Shin;Chang-hyun Song;Bu-geun Jo;Jae-won Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.281-288
    • /
    • 2023
  • This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 m3/d for riverbank filtration intake facility and 3,500 m3/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical Oxygen Demand) 52%, TOC(Total Organic Carbon) 57%, SS(Suspended Solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved Organic Carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.

Using of Riverbed Filtration for Intake System (기술사마당 - 하상여과를 이용한 간접취수 확보방안)

  • Lee, Sang-Soo
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.3
    • /
    • pp.47-53
    • /
    • 2009
  • Riverbed filtration(RBF) system is used to develop ground water and infiltrated water supplies from permeable sand and gravel deposits. RBF plants are constructed with a reinforced concrete caisson that serves as a wet well pumping station. The lateral well screens are projected horizontally into waterbearing deposits from inside the caisson. Riverbed filtration(RBF) is a low-cost and efficient alternative water treatment for drinking-water applications.

  • PDF

Removal of Organic Matter and Nitrogen in a Model System of Riverbed Filtration (하상여과 모형에서 유기물과 질소의 제거)

  • Ahn, Kyu-Hong;Sohn, Dong-Bin;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.525-534
    • /
    • 2005
  • A column experiment was performed to investigate the influence of the sludge cake development on the riverbed and the hydraulic gradient imposed by the drawdown at the well on the filtrate quality in order to offer a guideline in the design and operation of the riverbed filtration. Results show that the sludge cake on the riverbed plays an important role in the removal of the organic matter. Under the conditions of this study the COD removal rate increased from 17% to 50% along with the sludge cake development, which was equivalent to the BCOD removal of 22% and 67%, respectively. The active removal of the organic matter took place in the sludge cake and the upper 40 cm of the riverbed. As the flow rate increased owing to the increase in the head difference imposed on the column, the slope of the COD profile near the column inlet decreased, however, the profiles converged in about 40 cm from the inlet. In 10 days of sludge cake formation the dissolved oxygen was depleted at the depth of 70 cm, which suggests the denitrification can take place beyond the depth. This depth was further reduced to $20{\sim}40\; cm$ as the sludge cake developed. From this study the removal of organic matter can be expected through the riverbed filtration even with the depth of as shallow as 3 m, which is frequently met in Korea, while the removal of nitrogen through denitrification is not expected to be active under the condition.

Roughness Coefficient of Collector Well Lateral in a Model Riverbed Filtration (하상여과 모형에서 수평집수관의 조도계수)

  • Kim, Woo-Chul;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.176-183
    • /
    • 2007
  • In order to analyze the experimental results obtained from the model riverbed filtration performed by Ahn et al. a mathematical model was developed to simulate the flow through the lateral. The discharge rates at each section of the lateral measured by Ahn et al. were compared with the model predictions, and they matched favorably. The Manning's roughness coefficients of all the laterals employed in the study of Ahn et al. were determined using the model. Results show that the roughness coefficient becomes larger with the increase in the entrance velocity to the collector well, and that the coefficient ranges from 0.012 to 0.015 under the normal operational conditions of the riverbed filtration. Results also show that the coefficient becomes smaller as the lateral diameter increases.

An Experimental Study on the Distributions of Residual Head and Discharge Rate along Collector Well Laterals of a Model Riverbed Filtration (하상여과의 집수관 모형에서 잔류수두와 유입율 분포에 관한 실험연구)

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Kyung-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1305-1310
    • /
    • 2005
  • As a way to the optimum design of the collector well lateral in riverbed filtration, experiments were performed using sand tanks which were connected to form a model lateral system. Measured were the residual hydraulic heads along the laterals, the discharge rates at each sand tank and the production rates at the collector well while the model laterals were operated with various scenarios of changing parameters including water level of the collector well, the lateral diameter and length, and the hydraulic conductivity of the sand. Results showed that riverbed filtration could be more efficient when the resistance in the lateral was weak compared with the resistance in the sand, which was indicated by the more flattened distribution of the residual hydraulic heads along the lateral. Results also showed that the discharge rate increased exponentially with the approach to the collector well, and that the exponent increased as the lateral diameter decreased and/or the hydraulic conductivity of the sand increased. It was also seen that the well production increased with the increase in the lateral length and diameter although the marginal productivity decreased. It could be concluded that the axial flow velocity in the lateral was an important factor governing the efficiency of a lateral in riverbed filtration and that the maximum entrance velocity to the collector well, over which the efficiency decreased drastically, was about 1 m/sec under the conditions of this study.

A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond (다목적 여과저류지에서의 하상여과용 인공하천 설계연구)

  • Sohn, Dong-Hoon;Park, Jae-Young;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.536-543
    • /
    • 2011
  • In order to find the best design of artificial stream for the riverbed filtration in multi-purpose filtration pond, a mathematical model was developed employing the energy line and the Manning's formula and was analyzed by the Euler's technique. Various design factors were investigated through scenario analyses of the artificial stream using the model. Results showed that the appropriate slope of the stream bottom was 2/10,000 and the appropriate infiltration rate at the streambed was $2.5m^3/m^2-day$ for the pond with the area of 100 ha, and that the Manning's roughness coefficient in this case was expected to be about 0.026 and the maximum water-depth was less than 1m. It was also shown that the longer the artificial stream the more advantageous it became for the riverbed filtration. Furthermore, results showed that it was not an efficient way to prevent clogging of the streambed by increasing the flow velocity of the stream and that the performance was higher near a weir with a large head drop.

A Study on Application of The Available Geothermal Energy From Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상)의 열원을 이용한 지열에너지 활용에 관한 연구)

  • Kim, Hyoung-Soo;Jung, Woo-Sung;Ahn, Young-Sub;Hwang, Ki-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.209-214
    • /
    • 2006
  • In this study, application of groundwater thermal energy by use of riverbank filtration(RBF) system is reviewed and checked as an energy resources. Also, the cooling and heating system using RBF was developed in Chang-Won Waterwork site to examine the feasibility in real operation of the system. We estimates the roughly overall energy obtained from RBF system if the system is used in cooling and heating. The water temperature and room temperature have been monitored to evaluate the efficiency of the system and the preliminary results show that the geothermal energy obtained by RBF could be adopted in cooling and heating energy source efficiently.

  • PDF