• Title/Summary/Keyword: River2D model

Search Result 265, Processing Time 0.03 seconds

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Development of 1D finite volume model for discontinues flow simulation (K-River) (불연속 흐름 모의를 위한 1차원 유한체적 모형 K-River의 개발)

  • Jeong, Anchul;An, Hyunuk;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.895-903
    • /
    • 2018
  • There are a large number of weirs installed in rivers of Korea, and these characteristics are not common in other countries. When the flow passes through a structure such as a weir, discontinuous flow occurs. In terms of numerical simulation, it affects the numerical instability due to the balance between the flow term and the source term. In order to solve these problems, many researchers used empirical formulas or numerical scheme simplification. Recently, researches have been conducted to use more accurate numerical scheme. K-River was developed to reflect the characteristics of domestic rivers and calculate the discontinuous flow more accurately. For the verification of K-River, 1) numerical experiment simulations with a bump in the bed, 2) laboratory experiment of hydraulic jump simulation, 3) real river were performed. K-River verified its applicability by simulating results similar to the exact solution and observed value in all simulations.

Analysis of Flow and Bed Changes by Hydraulic Structure using CCHE2D: Focusing on Gangjeong-Goryeong Weir (수리구조물에 의한 흐름 및 하상변동 연구- 강정고령보를 중심으로 -)

  • Ahn, Jung-Min;Jung, Kang-Young;Shin, Dongseok;Lyu, Siwan
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Gangjeong-Goryong multi-function weir in the Nakdong river) was analyzed in order to examine the effect of hydraulic structures on local bed change. A 2D numerical model (CCHE-2D) was employed to simulate the sedimentation and erosion over a reach (25 km) including the weir. For the calibration and verification of the model, rainfall data from a real event (Typoon 'Ewiniar' in 2006) were used for flow and stage simulation. And the simulated results show a good agreement with the observed data for the whole domain. From the result, it was found that the installation and operation of the weir could aggravate bed changes by typhoon between movable weirs, and which resulted in redistribution of sediment.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Analysis of Hydraulic Characteristics using SMS RMA2 and SED2D Model in the Downstream of Gyeongan-Cheon (SMS를 이용한 경안천 하류구간의 하천흐름 분석)

  • Hong, Seong-Min;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.519-522
    • /
    • 2003
  • The purpose of this study is to analyze various hydraulic characteristics using SMS (Surface Water Modelling System) RMA2 model. It is based on 2-D finite element method. River reaches (13.8km) from Gyeongan gauge station to the inlet of Paldang lake was selected. Finite element was made by RIMGIS Data, and the analysis of river-changes was operated by unsteady flow. The sediment concentration and bed change was simulated using SED2D model.

  • PDF

Flow and Diffusion of Lower Han River Considering Tidal Elevation in Yellow Sea (서해안 조위를 고려한 한강 하류부의 흐름 및 확산)

  • Seo, Il-Won;Song, Chang-Geun;Lee, Myung-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.199-202
    • /
    • 2008
  • It is well-known fact that tidal difference between the ebb and flow in Yellow Sea is about 9 m so that it has largest value in the world. This wide range of tide level enables Yellow Sea water to intrude into main stream of Han River. However, the study of the tidal reach of Han River has not been carried out thoroughly since North and South Koreas share this region so that topography data and physical measurement are lacking. In this study, to examine the reverse flow and dispersion behavior by tidal effect at the tidal reach of Han River, 2-D river analysis models were applied. RMA-2 was applied to calculate the horizontal velocities and water surface elevation. With the results of velocities and water depth, RAM4, which is 2-D advection-dispersion model based on FEM was simulated to analyze the horizontal transport behavior of BOD.

  • PDF

Flood Stage Analysis and Prediction of River Bed Change for Stream Corridor Restoration Model with River Vegetation (하천식생 복원모형의 홍수위 분석과 하상변동 예측)

  • Song, Joong-Geun;Kim, Byeong-Chan;Lee, Jong-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.437-441
    • /
    • 2009
  • The modern times is as special as from the river, the river is very important of our life. The importance to preserve the river environment has been issued and the river developing method is being changed to use potential function of nature as well as flood control. Essential element of the river restoration is a vegetation. The flow resistance by vegetation along the river banks is greatly increase the flood stage. Therefore, the flow resistance due to vegetation in the river and roughness coefficient changes to understand the hydraulic characteristics is an important elements in the river restoration. The purpose of this study is to analyze the flood stage and the aspects of riverbed changes due to the corridor restoration with river vegetation. In order to simulate the flood stage and riverbed changes, HEC-RAS, RMA-2, and SED-2D model were applied for the upstream and downstream in study reaches, respectively.

  • PDF

Analysis of Hydraulic Characteristics Using SMS RMA2 and SED2D Model in the Downstream of Gyeongan-Cheon (SMS를 이용한 경안천 하류구간의 하천흐름 분석)

  • Hong, Seong-Min;Jung, In-Kyun;Lee, Joon-Woo;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.94-104
    • /
    • 2004
  • The purpose of this study is to analyze various hydraulic characteristics using SMS (Surface Water Modeling System) RMA2 model. It is based on 2-D finite element method. River reaches (13.8km) from Gyeongan gauge station to the inlet of Paldang lake was selected. Finite element was made by RIMGIS Data, and the analysis of river-changes was operated by unsteady flow. The sediment concentration and bed change was simulated using SED2D model. This River's velocity was distributed that 0.05~3.85m/s and bed change was changed about 0.0003~0.0135m.

  • PDF

A Case Study of the Habitat Changes for the Fish Community due to the Restoration of Pool-Riffle Sequence (여울-소 출현 복원을 통한 다양한 어종의 서식처 변화 연구)

  • Choi, Heung Sik;Choi, Jonggeun;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • The present study aimed to investigate the impact of the restoration of the restoration technique on fish habitat using a physical habitat simulation in the Wonju-cheon Stream, Korea. The target species were Pungtungia herzi, Zacco platypus, and Zacco Koreanus, a dominant and sub-dominant species in the Wonju-cheon Stream. The River2D model was used for the computation of the flow and the habitat suitability index model was used to estimate the quality and quantity of habitat using habitat suitability curve. To assess the impact of pool-riffle sequence on change of fish habitat, this present study conducted using the each representative distance, namely, 50 m, 100 m, 200 m, and 300 m. Simulation results indicated that the pool-reffle sequence significantly increased the habitats for the target species than the result without considering pool-riffle sequence. On average, 53% of the Weighted Usable Area (WUA) increased due to pool-riffle sequence in the study area.

Numerical Simulation of Bed Change at the Confluence of the Gamcheon and Mihocheon (합류부에서 하상변동 수치모의 연구: 미호천 및 감천 합류부를 대상으로)

  • Park, Moonhyung;Kim, Hyung Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.328-338
    • /
    • 2019
  • This paper presents the numerical simulations of future river bed changes using CCHE2D, a two-dimensional numerical model, for river confluences at the confluences of the Nakdong River and Gamcheon as well as Geum River and Mihocheon. The numerical simulations of future river bed changes were conducted for three years using hydrological data from August 30, 2012, to August 29, 2015 after the Four Major River Restoration Project. The simulation results demonstrated that river bed changes occurred actively near the confluence where sediment deposition was concentrated, resulting in the possibility of point bar formation. Through the numerical simulations, the characteristics of future river bed change was evaluated by investigating the characteristics of bed changes, average bed elevation changes, and the difference between deposition and erosion in the target section. The two-dimensional numerical model is expected to be used in the future to prepare effective stabilization plans for the tributary confluence.