DOI QR코드

DOI QR Code

Numerical Simulation of Bed Change at the Confluence of the Gamcheon and Mihocheon

합류부에서 하상변동 수치모의 연구: 미호천 및 감천 합류부를 대상으로

  • Park, Moonhyung (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hyung Suk (River Experiment Center, Korea Institute of Civil Engineering and Building Technology)
  • 박문형 (한국건설기술연구원 국토보전연구본부) ;
  • 김형석 (한국건설기술연구원 하천연구센터)
  • Received : 2019.12.16
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

This paper presents the numerical simulations of future river bed changes using CCHE2D, a two-dimensional numerical model, for river confluences at the confluences of the Nakdong River and Gamcheon as well as Geum River and Mihocheon. The numerical simulations of future river bed changes were conducted for three years using hydrological data from August 30, 2012, to August 29, 2015 after the Four Major River Restoration Project. The simulation results demonstrated that river bed changes occurred actively near the confluence where sediment deposition was concentrated, resulting in the possibility of point bar formation. Through the numerical simulations, the characteristics of future river bed change was evaluated by investigating the characteristics of bed changes, average bed elevation changes, and the difference between deposition and erosion in the target section. The two-dimensional numerical model is expected to be used in the future to prepare effective stabilization plans for the tributary confluence.

본 논문에서는 하천의 지류와 본류가 만나는 합류부를 대상으로 2차원 수치모형인 CCHE2D를 이용하여 장래하상변동 수치모의를 수행하고 분석을 수행하였다. 대상구간은 하상변동의 개연성이 클 것으로 예상되는 낙동강과 감천 합류부 그리고 금강과 미호천 합류부를 대상으로 하였다. 해당구간에서 4대강 살리기 사업이 종료된 이후인 2012년 8월 30일부터 2015년 8월 29일 수문자료를 활용하여 장래하상변동 수치모의를 수행하였다. 장래하상변동 수치모의 결과 합류부 부근에서 하상변동이 활발히 발생하는 것으로 나타났으며 특히 유사 퇴적이 집중되어 사주가 형성될 가능이 있는 것으로 나타났다. 수치모의를 통해 대상구간에서 하상변동, 평균 하상고 변화, 세퇴차량 등을 검토하여 장래 하도변화 특성을 검토하였다. 2차원 수치모형을 활용하여 지류 합류부 구간에서 향후 효율적인 지류 합류부 하도안정화 대책을 수립하는데 활용될 것으로 기대된다.

Keywords

References

  1. Ackers, P. and White, W. R. 1973. Sediment transport: New Approach and Analysis, Journal of Hydraulics Division, ASCE, 99(11): 2041-2060. https://doi.org/10.1061/JYCEAJ.0003791
  2. Ahadiyan, J., Adeli, A., Bahmanpouri, F. and Gualtieri, C. 2018. Numerical Simulation of Flow and Scour in a Laboratory Junction, Geosciences, 8: 162. https://doi.org/10.3390/geosciences8050162
  3. Choi, H., Mo, S., and Lee, S. 2015. An Analysis for the characteristics of headward erosion and separation zone due to bed discordance at confluence. Journal of Korea Water Resources Association, 48(11): 879-889. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.11.879
  4. Engelund, F. A. and Hansen, E. 1967. Monograph on sediment transport in alluvial streams, Teknisk Forlag.
  5. Garbrecht, J., Kuhnle, R. A. and Alonso, C. V. 1995. A sediment transport formulation for large channel networks, Journal of Soil and Water Conservation, 50(5): 517-579.
  6. Jang, C., Kim, J., and Ko, I. 2006. Numerical simulation of flow and bed change at the confluence of the Geum river and Mihocheon, Journal of Wetland Research, 8(9): 91-103. (in Korean)
  7. Jang, C. 2017. Numerical Simulation of Flow Characteristics and Channel Changes with Discharge in the Sharped Meandering Channel in the Naeseongcheon, Korea, Ecology and Resilient Infrastructure, 4(1): 24-33. https://doi.org/10.17820/eri.2017.4.1.024
  8. Jang, E. and Ji, U. 2017. Numerical Analysis on Flow and Bed Change Characteristics by Discharge Variations at the Confluence of Nakdong and Geumho Rivers, Journal of the Korea Academia-Industrial cooperation Society, 18(12): 659-667. (in Korean) https://doi.org/10.5762/KAIS.2017.18.12.659
  9. Jeong, A., Kim, S., Yu, W., Kim, Y. and Jung K. 2018. Estimation of River Dredging Location and Volume Considering Flood Risk Variation Due to Riverbed Change, 18(3): 279-291. (in Korean) https://doi.org/10.9798/kosham.2018.18.3.279
  10. Kim, G. and Jang, C. 2016. Numerical Analysis of the Behavior of Bars in a Compound Channel with a Drop Structure, Ecology and Resilient Infrastructure, 3(1): 14-21. https://doi.org/10.17820/eri.2016.3.1.014
  11. KWRA. 2007. River Construction Standard Specifications, Korea Water Resources Association (in Korean)
  12. MLTMA. 2009. Standard and Commentary of River Design, Ministry of Land, Transport, and Maritime Affairs (in Korean)
  13. MLTMA. 2009. Basic Plan for river maintenance of Nakdong River, Ministry of Land, Transport and Maritime Affairs (in Korean)
  14. MLTMA. 2011. Basic Plan for river maintenance of Geum River, Ministry of Land, Transport and Maritime Affairs (in Korean)
  15. MLTMA. 2010. Basic Plan for river maintenance of Gamcheon, Ministry of Land, Transport and Maritime Affairs (in Korean)
  16. MLTMA. 2012. River Maintenance Manual, Ministry of Land, Transport, and Maritime Affairs (in Korean)
  17. MLIT. 2016. River change monitoring and evaluation, Ministry of Land, Infrastructure and Transport (in Korean)
  18. Park, M., Kim, H. S. and Baek, C. H. 2018. Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a twodimensional model, Journal of Korea Water Resources Association, 51(12): 1273-1284. (in Korean)
  19. Schindfessel, L., Creelle, S. and De Mulder, T. 2015. Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow, Water, 7: 4724-4751. https://doi.org/10.3390/w7094724
  20. Wu, W., Wang, S., S. Y. and Jia, Y. 2000. Nonuniform sediment transport in alluvial river, Journal of Hydraulic Research, 38(6): 427-434. https://doi.org/10.1080/00221680009498296