• Title/Summary/Keyword: River water quality modeling

Search Result 165, Processing Time 0.026 seconds

Water Quality Modeling for Environmental Management in Chinhae.Masan Bay (진해.마산만의 환경관리를 위한 수질모델링)

  • 조흥연;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • The horizontal two-dimensional model which can predict the long-term water quality(WQ) change is setup for the environmental management. For the model calibration and verification, we measured the pollutants load at 22 streams and the WQ at 16 stations monthly and/or seasonally in Chinhae . Masan Bay. The pollutants release rate from the sediment was also measured to consider the regionally different sediment pollution level. From the model application results, it is shown that the WQ concentrations in most of the regions adjacent to land and river inflow are considerably high, but rapidly decrease along the seaward direction. In Masan Bay, the particulate inflow-pollutants were substantially deposited and gradually contaminated the bottom sediment on account of the excessive pollutants load and flow stagnancy. Eutrophication in the effluent discharge region was also being slowly progressed by the inefficiently treated wastewater containing amount of Nand P constituents.

  • PDF

A Study on the 3-month Prior Prediction of Chl-a Concentraion in the Daechong Lake using Hydrometeorological Forecasting Data (수문기상예측자료를 활용한 대청호 Chl-a 3개월 선행예측연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.144-153
    • /
    • 2021
  • In recently, the green algae bloom is one of the most severe challenges. The seven days prior prediction is in operation to issues the water quality warning, but it also needs a longer time of prediction to take preemptive measures. The objective of the study is to establish a method to conduct a 3-month prior prediction of Chl-a concentration in the Daechong Lake and tested its applicability as a supplementary of current water quality warning. The historical record of water quality in the Daechong Lake and seasonal forecasting of ECMWF were obtained, and its time-series characteristics were analyzed. The Chl-a forecasting model was established using a correlation between Chl-a concentration and meteorological factor and NARX model, and its efficiency was compared.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Estimation of Total Allowable Pollutant Loads Using Eco-hydrodynamic Modeling for Water Quality Management on the Southern Coast of Korea (생태계 모델에 의한 총허용 오염부하량 산정을 통한 연안해역의 수질관리)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.29-43
    • /
    • 2007
  • For effective management of water quality on the southern coast of korea, a three-dimensional eco-hydrodynamic model is used to predict water quality in summer and to estimate the reduction rate in pollutant loads that would be required to restore water quality. Under the current environmental conditions, in particular, pollutant loadings to the study area were very high, chemical oxygen demand (COD) exceeded seawater quality criteria to comply with current legislation, and water quality was in a eutrophic condition. Therefore, we estimated reduction rates of current pollutant loads by modeling. The model reproduced reasonably the flow field and water quality of the study area. If the terrestrial COD, inorganic nitrogen and phosphorus loads were reduced by 90%, the water quality criteria of Region A were still not satisfied. However, when the nutrient loads from polluted sediment and land were each reduced by 70% simultaneously, COD and $Chl-{\alpha}$ were restored. When we reduced the input COD and nutrient loads from the Nakdong River by 80%, $Chl-{\alpha}$ and COD of Region B decreased below $10\;{\mu}g\;1^{-1}$ and $2\;mg\;1^{-1}$, respectively. The water quality criteria of Region C were satisfied when we reduced the terrestrial COD and nutrient loads by 70%. Total allowable loadings of COD and inorganic nutrients in each region were determined by multiplying the reduction rates by current pollutant loads. Estimated high reduction rates, although difficult to achieve at the present time under the prevailing environmental conditions, suggest that water pollution is very severe in this study area, and pollutant loads must be reduced within total allowable loads by continuous and long-term management. To achieve the reduction in pollutant loads, sustainable countermeasures are necessary, including the expansion of sewage and wastewater facilities, polluted sediment control and limited land use.

  • PDF

A Study on Water Quality Management of Seonakdong River Using Surface Water Quality Modeling (하천수질모델링을 통한 서낙동강의 수질관리 방안 연구)

  • Hwang, Jin-Young;Kim, Young-Do;Lee, Nam-Joo;Noh, Joon-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1317-1321
    • /
    • 2007
  • 대표적인 하천수질모형으로는 정상상태 모형인 QUAL2E와 비정상상태 모형인 CE-QUAL-RIV1이 있다. 정상 및 비정상상태 수질모형의 용도는 QUAL2E가 월별 및 순별 장기수질예측에 매우 활용도가 높다고 하면 CE-QUAL-RIV1는 갑작스런 수질사고와 같은 단기수질모의 즉, 댐방류 플러싱효과를 분석하는 효과에 매우 최적화된 모형이라 할 수 있다. 대부분의 하천 수질 예측모델이 비정상상태 흐름이 아닌 정상상태 흐름만을 고려하여 개발되었기 때문에 댐이나 수문에 의해 차단된 조절하천에서 부정류 흐름상태를 고려한 수질예측 모델이 필요하다. 본 연구의 대상 유역인 서낙동강은 상류에는 대저수문, 하류에는 녹산수문이 위치하고 있으며, 이와 같은 수문들에 의하여 하천의 유량이 조절되는 호소형 하천으로 자연적인 하천흐름이 원활하지 않은 정체수역이다. 따라서 장기간 오염물질이 퇴적되고 있으며, 이로 말미암아 수질오염이 매우 심한 곳이기도 하다. 서낙동강은 대저수문 유입량과 녹산수문 방류량에 따른 하천수질의 영향이 크며, 개발욕구가 강한 경상남도 김해시와 부산광역시 강서구가 위치한 수계로서 현재 발생부하량 뿐만 아니라 장래에 예상되는 발생부하량도 매우 큰 하천이다. 이와 같은 문제를 해결하기 위한 가장 근원적인 방안은 적절한 수문운영을 통하여 수역 내의 유속을 적절히 조절하고, 이를 통하여 수질개선 효과를 확보하는 것이다. 본 연구에서는 정체수역인 서낙동강의 대저수문 유입량과 녹산수문 방류량을 수문운영에 따라 하천유량을 통하여 실측하고, 이로 인한 수질 변화를 체계적으로 조사함으로써 다수의 수문운영 조건에 따른 비정상상태에서의 서낙동강 본류의 수질을 실측하여, 수질이 좋은 낙동강 본류 원수의 유입에 따른 수질개선 효과와 녹산수문 방류에 의한 플러싱 효과를 정량적으로 평가해보고자 하였다. 본 연구에서 실측된 수문 유입량 및 방류량 증가에 따른 하천수질변화 결과를 비정상 하천수질모형을 통해 검증하고, 이를 활용하여 서낙동강의 수질 개선을 위한 적절한 유량 및 운영방안을 구축할 수 있을 것으로 판단된다.

  • PDF

Analysis the Effects of Physical Blocking Weirs on the Water Quality in Daechung Reservoir (물리적 차단시설이 대청호 수질에 미치는 효과 분석)

  • Lee, Heungsoo;Chung, Sewoong;Park, Hyungseok;Jeong, Donghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2012
  • This study was aimed to assess the effects of additional installation of two different types of weirs, one is a curtain-type weir and another is a submerged-type weir, on the control of algal growth in Daechung Reservoir. A two-dimensional(2D) coupled hydrodynamic and eutrophication model that can accommodate vertical movement of the curtain weir following the water surface variations was verified using field data obtained in two distinctive hydrological years; dry(2008) and wet(2010). The model adequately simulated the temporal and spatial variations of water temperature, nutrients and algal(Chl-a) concentrations during the periods. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the model to 2001(dry year) and 2010 assuming 6 different scenarios according to installation locations. The curtain weirs that already installed at 3, 5, 7 sites(scenario C-2) showed significant effect on the control of algal growth in the reservoir; the reduction rates of algal concentration were placed in the range of 7.5~31.5% and 9.1~44.9% for 2001 and 2010, respectively. However the simulation results revealed that additional installation of curtain weirs(scenario C-3~C-6) in the bay area (choosori) have marginal effect. The effectiveness of submerged weir was evaluated against 2010 assuming 7 different scenarios according to installation locations, but all scenarios(S-1~S-7) showed neglectable or negative effect on the control of algal growth.

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

Evaluation of Groundwater Level Decline and Water Quality Due to Tunnel Excavation (터널굴착으로 인한 지하수위 저하 및 수질영향 평가)

  • Kim, Min Gyu;Kim, Minsoo;Jeong, Gyocheol;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • In this study, the flow analysis to evaluate the extent of groundwater decline and the effect of the small valleys caused by the decrease of groundwater level in the construction of road tunnel, and the pollutant movement analysis to evaluate pollution of nearby water source by pollutant discharge during tunnel construction, respectively. The decrease of the groundwater during the 30 month tunnel excavation period was maximum 27 m and it was found to be the largest within 50 m from the tunnel center. The flow of groundwater is shown in the form of flowing into the tunnels and the effects of groundwater level decline were observed up to a tunnel radius of 200 m. As a result of the numerical modeling of the contaminant transport to examine the influence of the polluted water discharge from the tunnel, the range of the turbid water generated at the end of the tunnel is up to 120 m and it is estimated that the risk of contamination of the small river is not large.

A Study on the Periodical Variations of Water Quality under the Condition of Stagnation (저수조내에서 수질의 경시적 변화에 관한 연구)

  • 박병윤
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.81-90
    • /
    • 1995
  • In order to provide the basic information for the water quality modeling, the water pollution indicators of Sin stream and Keumho river flowing through Taegu city were measured, and the Periodical variations of these indicators were studied under the condition of stagnating for 19 days. For this experiment, three sampling sites(Sungpook bridge, Mutae bridge and Gangchang bridge) were selected. Sungpook bridge is located most down the Sin stream, Mutae bridge and Gangchang bridge are located on the lower Keumho river. The results were as follows. 1. The values of water pollution indicators measured at Mutae bridge were pH 8.7, TSS 51mg/1, TS 383mg/1, Cl- 60.68mg/1, turbidity 32FTU, DO 8.58mg/1, oxygen deficit 2.02mg/1, COD 16.32mg/1, organic carbon 13.60mg/1. 2. At Gangchang bridge located down more than Mutae bridge, the values of these indicators were pH 8.0, TSS 26mg/1, TS 737mg/1, Cl- 90.59mg/1, turbidity 37FTU,DO 3.49mg/1, oxygen deficit 7.11mg/1, COD 28.02mg/1, organic carbon 14.28mg/1. 3. At Sungpook bridge, the values of these indicators were pH 8.3, TSS 145mg/1, TS 344mg/1, Cl- 32.51mg/1, turbidity 60FTU, DO 6.53mg/1, oxygen deficit 4.07mg/1, COD 43.79mg/1, organic carbon 11.03mg/1. 4. At Mutae bridge and Sungpook bridge of which initial DOs were high, DOs have decreased under the condition of stagnating for 7 days and increased after that time. On the contrary, at Gangchang bridge of which oxygen deficit was very high(7.11mg/l), DO have increased under the condition of stagnating for 13 days and decreased after that time 5. All the samples showed the quick decrease of CODs and organic carbons under the condition of stagnating for 19 days. Nevertheless, at Sungpook bridge ·of which initial COD was yeW high(43.79mg/1), the value of COD measured at the last day of experiment was still high(21.35mg/1) because of a large quantity of reducing inorganic matters. 6. All the samples didn't show the distinct decrease of turbidities because of a large quantity of nonbiodegradable inorganic solids.

  • PDF

Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images

  • Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.