• Title/Summary/Keyword: River water quality

Search Result 2,029, Processing Time 0.03 seconds

The Characteristric of Oxygen Consumption of Contaminated river-bed Sediment (오탁하천 하상저니의 산소 소비특성에 관한 연구)

  • Han, Jong-Ok
    • 수도
    • /
    • s.50
    • /
    • pp.20-25
    • /
    • 1989
  • Water quality of river is greatly influenced by sediments of planktons, suspended solids and organic matters being transported by efflenced. The water quality is also affected by their release at the place of sediments with slow flow of water. This paper deals with the Characteristics of Oxygen consumption of sediments in small river which is greatly vary with time. Some typical samples of sediment were taken from both aerobic and anaerobic condition reserved for several months. and, the samples of sediment were checked on the relative ratio of oxygen consumption by nitrification.

  • PDF

Necessity for Expansion of Total Phosphorus Management in the Geum River Watershed (금강수계에서 총인관리의 확대 필요성)

  • Park, Jae Hong;Lee, Jae Kwan;Oh, Seung Young;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • Total phosphorus was set as a target indicator to prevent eutrophication and algae growth, etc., in three major rivers (Nakdong River, Geum River and Yeongsang/Seomjin River) for the second phase (2011 ~ 2015) in total maximum daily loads (TMDLs) system. However, total phosphorus management was restrictively introduced, i.e., upstream of the Lake Daechung, in the Geum River watershed. Total phosphorus concentration and trophic levels in downstream of the Lake Daechung (include Mangyeong and Dongjin rivers) were increased more than upstream. Therefore, it is necessary to expand total phosphorus management in all watersheds of the Geum River. If total phosphorus was managed in all area of the Geum River watershed, it is possible to decrease total phosphorus concentration and trophic levels, and solve the unbalanced water quality between up and downstream of the Lake Daechung.

Analysis of Pollutant Characteristics in Nakdong River using Confirmatory Factor Modeling (확인적 요인모형을 이용한 낙동강 유역의 오염특성 분석)

  • Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.84-93
    • /
    • 2012
  • The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.

Water Quality Status of the Unit Watersheds in the Yeongsang / Seomjin River Basin since the Management of Total Maximum Daily Loads (수질오염총량관리제 시행에 따른 영산강.섬진강수계 단위유역의 수질 현황)

  • Park, Jae Hong;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.719-728
    • /
    • 2011
  • The results of investigation on the water quality of the unit watersheds in the Yeongsang/Seomjin River indicate that $BOD_5$, SS, T-P decrease in most of the unit watersheds. However, $COD_{Mn}$ and T-N increase since the Total Maximum Daily Loads (TMDLs). It is thought that $COD_{Mn}$, which is included non-biodegradable matters, is difficult to decrease only using by conventional biological treatment facilities and T-N is affected by non-point source, etc. The results of assessment on 3 years $BOD_5$ indicate that most of the unit watersheds were being improved except Yeongbon A, Seombon C and Yocheon B. In addition, it was found that T-P were also being improved except Yocheon B and Hwangryeong A. Consequently, water qualities of the unit watersheds have been improved in many cases since the TMDLs.

Evaluation of Water Quality Characteristics and Grade Classification of Yeongsan River Tributaries (영산강 수계 지류.지천의 수질 특성 평가 및 등급화 방안)

  • Jung, Soojung;Kim, Kapsoon;Seo, Dongju;Kim, Junghyun;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.504-513
    • /
    • 2013
  • Water quality trends for major tributaries (66 sites) in the Yeongsan River basin of Korea were examined for 12 parameters based on water quality data collected every month over a period of 12 months. The complex data matrix was treated with multivariate analysis such as PCA, FA and CA. PCA/FA identified four factors, which are responsible for the structure explaining 78.2% of the total variance. The first factor accounting 27.3% of the total variance was correlated with BOD, TN, TP, and TOC, and weighting values were allowed to these parameters for grade classification. CA rendered a dendrogram, where monitoring sites were grouped into 5 clusters. Cluster 2 corresponds to high pollution from domestic wastewater, wastewater treatment and run-off from livestock farms. For grade classification of tributaries, scores to 10 indexes were calculated considering the weighting values to 3 parameters as BOD, TN and TP which were categorized as the first factor after FA. The highest-polluted group included 10 tributaries such as Gwangjucheon, Jangsucheon, Daejeoncheon, Gamjungcheon, Yeongsancheon. The results indicate that grade classification method suggested in this study is useful in reliable classification of tributaries in the study area.

Research on the Development Management Basin and Goal for 3th T.W.Q on the Boundary between Metropolitan Cities/Dos Specified in Nakdong River Basin (낙동강수계 3단계 광역시·도 경계지점 목표수질 설정을 위한 관리권역 및 관리목표 설정 방법 연구)

  • Hwang, Ha Sun;Park, Ji Hyung;Kim, Yong Seok;Rhew, Doug Hee;Choi, Yu Jin;Lee, Sung Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.569-575
    • /
    • 2015
  • The current Total Pollution Load Control (TPLC) sets the Target Water Quality (TWQ) by utilizing the delivery ratio, unit loads, and water quality modeling, it also allocates the watershed's permitted discharge load. Currently, common target pollutants of every unit watershed in TPLC are BOD and T-P. This study has reviewed the 1th and 2th of TWQ setting process for the Nakdong River 3th TWQ setting in Total Pollution Load Control (TPLC). As a result of review, 1th and 2th were divided into one management basin (mulgeum) for setting management goals. However, 3th was divided into six management basins (mulgeum, gnagjeong, geumho river, nam river, miryang river, end of nakdong river). The principle of management goal setting were to achieve the objective criteria of Medium Areas for the linkage of the water environment management policy. And Anti-Degredation (principle of preventing deterioration) were applied to the 3th TWQ. Also, additional indicators were considered in accordance with the reduction scenarios for the final management goals.

Development of River Recreation Index Model by Synthesis of Water Quality Parameters (수질인자의 합성에 의한 하천 레크리에이션 지수 모델의 개발)

  • Seo, Il Won;Choi, Soo Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1395-1408
    • /
    • 2014
  • In this research, a River Recreation Index Model (RRIM) was developed to provide sufficient information on the water quality of rivers to the public in order to secure safety of publics. River Recreation Index (RRI) is an integrated water quality information for recreation activities in rivers and expressed as the point from 0 to 100. The proposed RRIM consisted of two sub models: Fecal Coliform Model (FCM) and Water Quality Index Model (WQIM). FCM predicted Fecal Coliform Grade (FCG) using a logistic regression and WQIM synthesized water quality parameters of, DO, pH, turbidity and chlorophyll a into Water Quality Index (WQI). FCG and WQI were integrated into RRI by the integrating algorithm. The proposed model was applied to upstream of Gangjeong Weir in Nakdong River, and compared with Real Time Water Quality Index (RTWQI) which is the existing water quality information system for recreation use. The results show that calculated RRI reflected change of integrated water quality parameters well. Especially chlorophyll a showed Pearson correlation coefficient -0.85 with RRI. Also, RRIM produced more conservative index than RTWQI because RRI was calculated considering uncertainty of water quality criteria. Further, RRI showed especially low values when fecal coliform was predicted as low grade.

The Estimation of Water Quality Changes in the Keum River Estuary by the Dyke Gate Operation Using Long-Term Data (장기관측자료에 의한 금강하구둑 수문조작에 따른 수질 변화 평가)

  • KWON Jung-No;KIM Jong-Gu;KO Tae-Seung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.348-354
    • /
    • 2001
  • This study was conducted to estimation of change characteristics for water quality by the dyke gate operation in the Keum River estuary. The estimation data made use of surveyed data in Keum River estuary by NERDI (National Fisheries Research and Development Institute) during $1990\~1999$. Shown to compare water quality changes at st. A and st. D in Figure 1, the concentrations of TSS, COD and nutrients at st. A were as high as about $2\~4$ times than those at st. D due to affection of fresh water discharge in the Keum River. The percentages of water quality change at surface water by dyke gate operation in the Keum River estuary were shown that TSS (Total Suspended Solid) was decrease to $56\%,\;47\%$ at st. A and D, and COD (Chemical Oxygen Demand) was increase to $68\%,\;71\%$ at st. A and D, respectively. The changes percentage of DIN (Dissolved Inorganic Nitrogen) by dyke gate operation in the Keum River estuary were increase high to $95\%$ at surface water and $7\sim30\%$ at bottom water, but those of DIP (Dissolved Inorganic Phosphorus) were increase to $2.8\sim8.6\%$ at surface water and $28\%$ at bottom water. The range of fluctuation for water quality at each station by dyke gate operation has shown that salinity and TSS are little better than before dyke gate operation, but COD show highly fluctuation. Also we studied estimation of characteristics of water quality change by the season, COD was increased except the summer, TSS was decreased to all season. DIN was increased to about $61\sim172.1\%$ for all season, but DIP was increased to the spring and decreased to the autumn, DIN enrichment in the estuary by dyke gate operation are interpreted to improvement of organic matter decomposition and nitrification by increasing the residence time and to increase nutrient flux in sediments due to decreasing dissolved oxygen and increasing a deposit matter.

  • PDF

Prediction of water quality in Tan stream of the Han river (장래 탄천수질과 한강본류에 미치는 영향 예측)

  • 신정식;정종흡;오경두;나규환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.49-56
    • /
    • 2001
  • The water quality simulation was carried out to predict water quality in Tan stream of the Han river using water quality model, QUAL2E. In the end, the future variations in water quality of Tan stream were simulated and the prediction of the impacts of Tan stream on water quality in the Han river was carried out by applying the Tan stream simulation results into the model. The results are as follows. The predicted results of future water quality of Tan stream suggested that the concentrations of BOD, T-N and T-P at Chungdam bridge would increase to 0.68~0.77 mg/$\ell$, 1.33~1.62 mg/$\ell$ and 0.05~0.06 mg/$\ell$, respectively in 2006 and 2011 and that with the implementation of advanced treatment in Sungnam and Tanchun sewage treatment plants, the concentration of T-N would be reduced more as the amount of treated sewage increase, while the concentration of T-P would stay 0.49 mg/$\ell$. The results obtained from simulation of the impacts of future Tan stream water quality improvement on the main stream of the Han river showed that with implementation of advanced treatment in both Sungnam and Tanchun sewage treatment plants, the concentration of T-N, T-P and chlorophyll-a at Hangang bridge and Heangju bridge would be reduced by 11.6%, 7.7% and 20.9%, respectively in 2..6 and by 13.6%, 9.4% and 22.2%, respectively in 2011, which indicates that the effect on the reduction of T-N and T-P would be relatively significant while the effect on the decrease of algae would be slight.

  • PDF

Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment (기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석)

  • Kang, Ji Yoon;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.