• Title/Summary/Keyword: River treatment

Search Result 650, Processing Time 0.031 seconds

Optimum Water Quality Contral of River Basin by Linear Programming (선형계획법에 의한 하천유역의 최적수질관리)

  • 김상근;이순택
    • Water for future
    • /
    • v.16 no.3
    • /
    • pp.159-169
    • /
    • 1983
  • In this paper, a linear programming was used for determining the optimum efficiency required of each wastwater treatment facility and minimum total treatment casts in order to meet any set of stream dissolved oxygen standards within a river basin. The optimum solution of water quality control which was obtained with the inventory equation of Camp-Dobbins' equation incorporated into the constraints of linear programming was compared with that of Streeter-Phelps' equation. It can be concluded that correlation coefficient was 0.997. Then the linear programming incorporating the inventory equation of selected streeter-Phelps equation was used in order to obtain the optimum solution of water quality control based on data form the Nakdong River.

  • PDF

Cause Diagnosis and Reduction Measures of Foaming in the Treated Wastewater Outlet of D Wastewater Treatment Plant (하수처리수 방류구의 거품발생 원인진단 및 저감방안: 국내 하수처리장 사례를 중심으로)

  • Shin, Jae-Ki;Cho, Youngsoo;Kim, Youngsung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • This study was conducted to suggest the cause analysis and mitigation measures of foaming generated in the effluent of wastewater treatment plant. The foam generated in the outlet connected with the tidal river system was identified as structural problems. And the main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. In consideration of these conditions, it present the effective ways such as micro-screen and submerged outlet, to mitigate the foaming generated in the water channel and outlet end.

Parameter Assessment for the Simulation of Drying/Wetting in Finite Element Analysis in River and Wetland (하천 및 습지에서 유한요소 해석시 마름/젖음 처리를 위한 매개변수 평가)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun;Kim, Sang Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.331-346
    • /
    • 2009
  • The serious problem facing two-dimensional finite element hydraulic model is the treatment of wet and dry areas. This situation is encountered in most practical river and coastal engineering problems, such as flood propagation, dam break analysis and so on. Especially, dry areas result in mathematical complications and require special treatment. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method of RMA-2 model to investigate for application of parameters. Experimental channel with partly dry side slopes, straight channel with irregular geometry and Han river were performed for tests. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

Study of Effectiveness of using higher voltages in analysis of dredged sediments and heavy metal concentration (고전압 이용한 준설퇴적토 유효성 및 중금속 변화에 관한 연구)

  • Kwon, Ki-Bum;Kim, Sang-Keun;Ramchanda, Prasad;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1446-1451
    • /
    • 2008
  • The clay found in the river or in any waste water treatment plant usually have a very high content of water. A large amount of sediments hinder the navigation in river. In waste water treatment plant, there is requirement of settling the thick sludge. These problems are overcome by using rapid means of sedimentation and settling. This paper focus on how method of Electrokinetic sedimentation can be made faster. Sedimentation using Electrokinetic phenomenon has been discussed with varied voltage applied and effect and dose of coagulant in increasing the process. The experimental test has been carried out at water content that are generally present in the case of river and small canals carrying waste water. This paper also focus on different heavy metals concentration during the process and the power aspects of process. A series of experiment were done to support the proposed theory and how a bubble formation could hinder the purpose of experiment.

  • PDF

Influence of sludge solids content on sludge dewaterability using bioleaching

  • Wong, Jonathan W.C.;Zhou, Jun;Zhou, Lixiang;Kurade, Mayur B.;Selvam, Ammaiyappan
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • Dewatering is an extremely important step in wastewater treatment process to reduce the final sludge volume in order to minimize the cost of sludge transportation and disposal. In the present study, the effect of different sludge solids content (1, 2 and 3.8%) on the dewaterability of anaerobically digested sludge using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was studied. The pH reduction rate was higher during initial process in the sludge having low solids content, but after 48 h of bioleaching, similar pH of below 3 was observed with all the different solids content. Bio-oxidation rate of $Fe^{2+}$ was initially higher in sludge with low solids content, but 100% $Fe^{2+}$ was oxidized within 60 h in all the three treatment levels. Compared to the control, specific resistance to filtration was reduced by 75, 78 and 80% in the sludge with a solids content of 1, 2 and 3.8% respectively, showing improvement in dewaterability with an increase in sludge solids content. Sludge effluent quality and sludge settling rate were also improved in treatments with higher solids content after the bioleaching process.

Evaluation of Water Quality Characteristics and Grade Classification of Yeongsan River Tributaries (영산강 수계 지류.지천의 수질 특성 평가 및 등급화 방안)

  • Jung, Soojung;Kim, Kapsoon;Seo, Dongju;Kim, Junghyun;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.504-513
    • /
    • 2013
  • Water quality trends for major tributaries (66 sites) in the Yeongsan River basin of Korea were examined for 12 parameters based on water quality data collected every month over a period of 12 months. The complex data matrix was treated with multivariate analysis such as PCA, FA and CA. PCA/FA identified four factors, which are responsible for the structure explaining 78.2% of the total variance. The first factor accounting 27.3% of the total variance was correlated with BOD, TN, TP, and TOC, and weighting values were allowed to these parameters for grade classification. CA rendered a dendrogram, where monitoring sites were grouped into 5 clusters. Cluster 2 corresponds to high pollution from domestic wastewater, wastewater treatment and run-off from livestock farms. For grade classification of tributaries, scores to 10 indexes were calculated considering the weighting values to 3 parameters as BOD, TN and TP which were categorized as the first factor after FA. The highest-polluted group included 10 tributaries such as Gwangjucheon, Jangsucheon, Daejeoncheon, Gamjungcheon, Yeongsancheon. The results indicate that grade classification method suggested in this study is useful in reliable classification of tributaries in the study area.

Development and Application of Coupled System for River Flow Analysis with Multi-dimensional Models in Nakdong River (낙동강수계 하천 흐름연계분석 시스템 개발 및 적용)

  • Ahn, Jung Min;Im, Toe Hyo;Lee, In Jung;Cheon, Se Uk;Lyu, Siwan
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.389-402
    • /
    • 2014
  • In this study, simulation technique with multi-dimensional model(EFDC), coupled with COSFIM and FLDWAV, has been applied to the upstream and downstream of weirs for hydraulic characteristics analysis through development of system and was performed for 8 multi-function weirs on Nakdong river using developed system. COSFIM, FLDWAV and EFDC can utilize suitable model in situation because they have pros and cons according to practical use purpose. Developed technique can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupling simulation technique can provide useful hydraulic information for river management and treatment.

Analysis of the Trophic Characteristics of the SoOak River Watershed Using the Korean Trophic State Index (한국형 부영양화지수를 이용한 소옥천 유역의 부영양 특성 분석)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin;Seo, Heeseung
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.330-337
    • /
    • 2018
  • The Korean Eutrophication Index($TSI_{ko}$) was estimated using water quality monitoring data of eight main sites in the SoOoak River watershed. The environmental characteristics of rivers were classified and evaluated using the $TSI_{ko}$ for each factor calculated by COD, T-P, and Chl-a. There is a good condition for the algae to grow due to shallow water depth, inflow of non-point source pollution during rainfall, influx of sewage treatment effluent and increase of residence time. It shows trophic state more than mesotrophication year round. Especially, in case of Chuso point, which is the inflow point of Daecheong Lake, the water quality deteriorated due to hydraulic characteristics and showed the eutrophic state. Therefore, it is necessary to establish the measures to improve the water quality through the precise monitoring of SoOak River.

Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River (강우에 의한 중랑천의 수질 특성 변화 연구)

  • Kim, Youn-Tae;Kim, Yu Lee;Woo, Nam-Chil;Hyun, Seung Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

Site Evaluation of Automated Monitoring Networks in Han River (한강수계 수질오염 자동측정망의 합리적인 측정지점 선정에 관한 조사연구)

  • Cho, Yong-Mo;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.91-98
    • /
    • 1997
  • At present, automated monitoring of water quality in Han river has been operated at each water treatment plant. But the automated measurement sites must be choosen newly because water source in Seoul move to the upper stream of Chamshil weir. In this study, automated monitoring sites in Han river were reviewed, and the proper sites for automated monitoring of water quality have been selected by Qual2E model, RMA model, water sampling guidline, Sanders' method and topograpical characteristics of Han river in order to resonable operate. 8 sites have been selected as follows: (1) the site of immediately after Paldang drainage (2) the left site and a right site of $Gu{\check{u}}i$ water intake (3) the left site and a right site at Noryangjin(Han river bridge) (4) the site between Shingok weir and Anyangchun confluence point(Hangju bridge) (5) the site of Chungryangchun downstream(existence) (6) the site of Tanchun downstream(existence) (7) the site of Anyangchun downstream(existence) (8) the site of Wangsukchun downstream. The results proposed resonable operating management of network and economical system built up.

  • PDF