• Title/Summary/Keyword: River pollution

Search Result 859, Processing Time 0.03 seconds

Water Quality Management of Kyung-an River Basin (경안천 유역의 수환경 관리방안)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.469-472
    • /
    • 2002
  • This study was conducted to show how to manage the water quality of Kyung-an river. The water quality and hydrologic data were obtained at the main river and branch streams in Marc $h{\sim}April$ 1998. First of all, we surveyed the contribution of branches for the pollution of water quality at Kyung-an river. It was in order of Kongiam(25.5%)>Yong-in Pollutant Treatment Complex (15.26%)^gt;Shin-won(13.99%)>Buen(11.86%)>Yangji(8.68%)>Yooun(7.43%)>Kwang-ju Pollution Treatment Complex(5.50%)>Osan(5.04%). The hydrological model using mass balance and BOD reduction formula suggested that if the quality of water Yoo-un and Shinn-won stream (branch streams of Kyung-an River) which is lowest in the basin is controlled adequately and outlet water from Yong-in pollutant treatment complex is adequately treated, the quality of Kyung-an river will be improved by 90% compared to current level.

  • PDF

Analysis of Water Quality Variation after Hydraulic Changes in Yeongsan River (수리 변동에 따른 영산강에서의 수질 변화 분석 연구)

  • Kim, Yu-Heun;Lee, Hye-Won;Choi, Jung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The Yeongsan River, one of the four major rivers in Korea, shows the highest degree of water pollution compared to the other major rivers. The construction and opening of two weirs, Seungchon and Juksan, induced fluctuations in the hydrologic conditions and water quality of the river. To investigate the water quality changes caused by the opening of the weir in 2017, this study analyzed the water quality data using the non-parametric Wilcoxon signed-rank test and the three-dimensional spatiotemporal plots. The non-parametric statistical test results showed that the concentration of all parameters has increased after 2017 at a significance level of 0.05. For the parameters that showed the highest degree of change, chlorophyll-a and suspended solids, the median values have increased by more than 30% after weir opening. Visual analysis additionally showed the spatial changes in the Yeongsan River. Generally, the sites above the Seungchon weir showed higher pollution levels than those above the Juksan weir. In time series, visual analysis results also showed the trend of rising concentration for all water quality parameters, indicating that the opening of two weirs had a significant effect on the change in water quality of the Yeongsan River.

Simultaneous Estimation of Diffuse Pollution Loads and Model Parameters for River Water Quality Modeling (하천 수질모형에 의한 비점 오염 부하량과 모형 매개변수의 동시 추정)

  • Jun, Kyung-Soo;Kang, Ju-Whan
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1009-1018
    • /
    • 2004
  • A systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution distributed along a stream reach and model parameters for a stream water quality model. It was applied with the QVAL2E model to the South Han River for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.

Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Nakdong River Unit Watersheds (부하지속곡선(LDC ; Load Duration Curve)을 활용한 낙동강수계 오염총량 단위유역 목표수질 평가방법 적용 방안)

  • Jung, Kang-Young;Kim, Hong Tae;Kim, Sang Soo;Kim, Shin;Shin, Dong Seok;Kim, Gyeong Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.433-445
    • /
    • 2017
  • In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.

Analysis of Behavior Characteristics of Water Pollutants in Yeongsan River Using 3D Hydraulic Model (3차원 수리 모델을 이용한 영산강 수질오염물질의 수체 내 거동 특성 분석)

  • Hye Yeon Oh;Eun Jung Kim;Jung Hyun Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2023
  • The Yeongsan River, a major water resource for Jeollanam-do, that is adjacent to industrial complexes and agricultural areas, is exposed to water pollution. Therefore, it is necessary to investigate the impact of water pollution incidences and prepare response systems for river environment safety for other water resources in the future. Environmental Fluid Dynamics Code (EFDC) was applied to the mainstream of the Yeongsan River where residential, commercial, and agricultural areas are located to analyze the behavior of pollutants conducting the scenario analysis. Considering the pollutants that affected the study area, two pollutants, oil and benzene, with different physical and chemical characteristics were selected for the analysis. As a result of comparing the actual and simulated values of the water elevation, temperature, and flow rate, it was confirmed that the model adequately reproduced the hydraulic characteristics of the Yeongsan River. The oil flow dynamics showed that an increase in flow rate led to reduction in the maximum height of the slick. Notably, the behavior of the oil was predominantly influenced by the wind conditions. In the case of benzene, lower flow scenarios exhibited decreased arrival times and residence times accompanied by an elevation in the maximum concentration levels. From the results of pollutant behavior in the study area, it is feasible to utilize the section of tributary confluence for collection and the weir area for dilution. This study enhances the understanding of the pollutant's behavior with different characteristics and develops effective control systems tailored to the physicochemical attributes of pollutants.

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

Analysis of Nonpoint source Reduction at Andong Area Considering Changes in CN (CN의 변화에 따른 안동시 물순환 선도도시 조성계획의 비점오염부하 저감효과 분석)

  • Kwon, Heongak;Jung, Kangyoung;Kim, Shin;Shin, Sukho;Ahn, Jungmin;Kim, Gyeonghoon
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Andong belongs to the Nakdong River Basin, Nakdong River is flowing through the city, including Andong dam and Imha dam. The runoff due to provincial transfer and impervious area has been increasing by urbanization increases and nonpoint source loads. In this study, we evaluate the runoff and nonpoint pollution loads in accordance with the development targeted at selected urban water cycle leading to Andong city. Andong city leading to the water cycle plan to evaluate the directly runoff and BOD, T-N and T-P nonpoint pollutant loads using the CN into account the temporal and spatial changes. Evaluation, direct runoff per year is 10.41 % if the green roof and a water permeable pavement replacement, water cycle parks and streets compositions, City impermeable layer improvements to be business including four kinds of scenario is applied to both the development and the BOD non-point pollutant loads 20.56%, T-N 9.55% and T-P pollution and nonpoint loads was investigated to be reduced 14.29%. Four kinds of low lapse rate of the development scenario of the highest thing urban impervious surface was investigated by improving business development prior year annual direct runoff is 6.25 %, BOD nonpoint pollution loads are 11.84%, T-N nonpoint pollution loads are 4.46 % and T-P was investigated by reducing pollutant loads to be 10.20%.

Assessment of Water Quality in the Lower Reaches Namhan River by using Statistical Analysis and Water Quality Index (WQI) (통계분석 및 수질지수를 이용한 남한강 하류 유역의 수질 평가)

  • Cho, Yong-Chul;Choi, Hyeon-Mi;Ryu, In-Gu;Kim, Sang-hun;Shin, Dongseok;Yu, Soonju
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.114-127
    • /
    • 2021
  • Water pollution in the lower reaches of the Namhan River is getting worse due to drought and a decrease in water quantity due to climatic changes and hence is affecting the water quality of Paldang Lake. Accordingly, we have used a water quality index (WQI) and statistical analysis in this study to identify the characteristics of the water quality in the lower reaches of the Namhan River, the main causes of water pollution, and tributaries that need priority management. Typically, 10 items (WT, pH, EC, DO, BOD, COD, SS, T-N, T-P, and TOC) were used as the water quality factors for the statistical analysis, and the matrix of data was set as 324 × 10·1. The correlation analysis demonstrated a strong correlation between Chemical Oxygen Demand (COD) and T-P with a high statistical significance (r=0.700, p<0.01). Furthermore, the result of principal component analysis (PCA) revealed that the main factors affecting the change in water quality were T-P and organic substances introduced into the water by rainfall. Based on the Mann-Kendall test, a statistically significant increase in pH was observed in SH-1, DL, SH-2, CM, and BH, along with an increase in WQI in SH-2 and SM. BH was identified as a tributary that needs priority management in the lower reaches of the Namhan River, with a "Somewhat poor" (IV) grade in T-P, "Fair" grade in WQI, and "Marginal" grade in summer.

Analysis of Water Quality Fluctuations in Upstream Namhan River Watershed Using Long-term Statistical Analysis (통계적 경향 분석을 통한 남한강 상류 수계 수질 변동 해석)

  • Byeon, Sang-Don;Noh, Yeon-Jung;Lim, Kyeong-Jae;Kim, Jong-Gun;Kim, Dong-Jin;Hong, Eun-Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.15-26
    • /
    • 2020
  • There are fifteen non-point pollution management areas in Korea and three of them (Doam lake, Daegi district and Golji-cheon) are located in the upstream of the Namhan river watershed. Many efforts to reduce non-point sources (NPS) pollution have been conducted, however, water quality pollution in the watershed is still serious. To solve these problems, it is a priority to grasp water quality using statistical techniques. In this study, a trend analysis was conducted to evaluate the effect of NPS management in the watershed. The long-term trends from 1996 to 2018 of water quality properties were analyzed using data collected from the water environment information system. Seventeen monitoring stations were selected along the main stream in Namhan river basin. Monthly water quality properties (BOD, COD, TN, TP, TN/TP ratio, Conductivity, SS and Chlorophyll-a) were collected and analyzed by Mann-Kendall test and LOWESS. The results showed that the Conductivity tended to increase in all regions and was the highest level in Jijangcheon. Organic pollution such as BOD and COD tended to increase in the Jungseon area. SS did not show a large tendency, but it showed high concentration in the Doam watershed. In all regions, 40% of water quality properties showed a tendency to 'UP', 15% of water quality properties tended to 'DOWN', and 46% indicated no tendency. In order to determine the cause of this, additional research and measures for improvement are necessary. This study will be used for the establishment of water quality policy in the future.

Han River Management Policy (한강수질의 관리방안)

  • 심영섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1992
  • Among the rivers in Korea, the Han River is the largest, most important one, which runs through the Seoul metropolitan region in the west toward the yellow sea. In the Han River basin there live as many as 17.1 mil. people including appr, 11 mil, citizens in Seoul. The Seoul Metropolitan region, already containing appr. 40% of the nation's total populating, expectedly poses an ever-growing polluting burden to the Han River. Due to Korea's vigorous industrialization and heavy urbanization in the past quarter century, water pollution was observed to be increasing in the Han River until the mid-1980's, but thereafter the Han River began to improve little by little by virtue of the government's massive investment and all-out efforts in water preservation. Public awareness on the importance of environmental protection is increasing unprecedentedly. With a view to meeting people's growing demand for clean water and pleasant environment, the government established the "Comprehensive Mid-Term Environmental Conservation Plan" (1992∼1993) in 1991. According to the plan, 1,315 bil.won(1.7 bil.us$ ) is to be poured into the Han River Basin to install 113 water pollutant abatement plants including 43 treatment facilities. To successfully cope with the future's challenging need for the environmentally sound sustainable development, a variety of measures and an array of policies are going to be incorporated with emphasis on, -redistributing such polluting sources as population and industries -tightening control of the water pollutant discharge -restricting the pollution-accompanying land use -enhancing the assimilation capacity of the river -stirring up the public awareness and participation in the environment protection We hopefully anticipate that with those e(forts the Han River will improve as drawn in the attached "1996's Envisioned Han River Quality".

  • PDF