• 제목/요약/키워드: River pollution

검색결과 856건 처리시간 0.03초

하천에 있어서 자연성의 보전, 정비, 창출에 관한 연구(I) - 농촌지역에서의 토지이용과 하천수질과의 상관성 - (A Study on the Conservation, Rehabilitation and Creation of Naturality of Rivers(I) - The Correlation of the degree of Pollution on a River and the Land Use in Rural Area -)

  • 이진희;이행렬;이재근;이동근;김훈희
    • 한국환경복원기술학회지
    • /
    • 제1권1호
    • /
    • pp.84-94
    • /
    • 1998
  • The sources of the pollution on a river are divided into two classes, one the point source and the other non-point source. In raining, especially, the non-point source discharged from paddy, residential area, road ${\cdots}$ etc have correlations with the land use. This study was carried out to find out the model to estimate the quality of water in a river according to the land use. Land use data (Pungse-Myeoun and Kwangduk-Myeoun in Chonan) were produced from Landsat TM (Thematic Mapper) and topographic map. Total nitrogen(TN) and total phosphorus(TP) general indices for the degree of pollution in river were measured during 11 months. Correlations between two variables(Land use and Pollutants(TN, TP)) were explained by the regression coefficient. As a result of this study, we found that among the five types of land use, the residential area, store area and paddy have significant effects upon the quality of water in a river. The results of this study will be applied to pre-estimate the degree of pollution in river broadly and to offer basic data in establishing the land use plan and the concept on the conservation of the river in rural area.

  • PDF

만경강 본류 중 오염우심지역의 TP 저감방안 연구 (A Study on the Reduction of Total Phosphate of the Concerned Pollution Area in the Main Stream of Mangyeong River)

  • 최정화;권재옥;이미선;장욱;최근화;고은혜;심서현;조창우
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.316-326
    • /
    • 2022
  • This study aimed to investigate the causes of the increasing Total Phosphate(TP) in the mainstream of Mangyeong river over the past 10 years, and suggested a reduction plan of about 3 points. First, the high TP concentration was continuously released in the discharge outlet of the Haepo bridge stormwater pipeline. The average TP concentration was 5.066 mg/L and values as high as 29.470 mg/L were measured. The highest pollution contribution rate to the Mangyeong river was more than 70 %. The cause of the pollution was expected to take place somewhere in Wanju Industrial Complex. Second, the average TP concentration of wastewater-treated effluent in the H factory was 0.405 mg/L. If a TP reduction facility is additionally installed in the H factory, it will help reduce TP uptake by Lake Saemangeum. Third, the TP concentration of untreated non-point source point flowing into the Samrae stream was very high with an average of 2.828 mg/L. Also, the pollution contribution rate of Samraecheon 2 to Mangyeong river was 21.8 % on average and up to 58 %. The pollution contribution rate was also high during the agricultural season and the winter, during which the flow rate is decreased. Investigation of these three points may be continuously needed, and analysis results and policy proposals presented to Jeollabukdo and Wanjugun to manage pollution sources.

영산강수계 비점오염원 중점관리지역 선정에 관한 연구 (A Study on the Selection of Non-point Pollution Management Regions with High Priority Order in the Yeongsan River Basin)

  • 이재춘;박혜린;임병진;이창희;이수웅;이용운
    • 생태와환경
    • /
    • 제45권4호
    • /
    • pp.347-355
    • /
    • 2012
  • In this study, non-point pollution sources in the Yeongsan river basin are analyzed; then, the priority regions (areas divided on a small scale) of management are selected for efficient water management of the Seungcheon and Jooksan reservoirs, which were constructed as one of the 4 major rivers restoration projects. The priority regions are decided by using the criteria of the excessive rate of target water quality, non-point pollution load per unit area, total TP load and down flow distance. The results of this study are as follows. The upper 10% of the priority regions for non-point pollution management includes YB15, YB05, YB10, YB24, YB14 and YB11 for the Seungcheon reservoir watershed, and YC24, YC25, YC30, YC34, YC22 and YC17 for the Jooksan reservoir watershed. However, a few regions in each of the Seungcheon and Jooksan reservoirs need to be selected in higher order, and the non-point pollution removal facilities in the regions need to be installed with respect to budget, urgent matter, and so on.

계층적 최적화 기법을 이용한 강의 수질오염 제어 (River Pollution Control Using Hierarchical Optimization Technique)

  • 김경연;감상규
    • 한국환경과학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1995
  • 생화학적 산소요구량(BOD) 및 용존 산소(DO)을 이용하여 여러구간이 있는 강에 대한 이산 상태공간모델은 설정하였다. 상호작용 예측방법을 이용하여, 상태변수에 시간지연이 존재하는 대규모 시스템에 적용가능한 계층적 최적화 방법을 기술하였다. 정상상태 오차를 해석적으로 구하고, 상수 목표티 추적문제에 있어서 정상상태 오차가 발생하지 않을 필요충분조겆을 규명하였다. 수질오염 모델에 대한 컴퓨터 모사를 통하여 기술한 알고리듬의 타당성을 확인하였다.

  • PDF

하수처리비용을 감안하고 7Q10과 저수량에 기초한 영산강 수질관리방안 연구 (Water Quality Management of the Youngsan River based on the 7Q10 and Q275 considering Wastewater Treatment Cost)

  • 조재현;유태종
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.700-709
    • /
    • 2002
  • Present condition of the Youngsan River pollution is serious. Concentrations of organic materials and nutrients are high and algal bloom takes place frequently. The pollution is mainly caused by domestic wastewater input from urban areas like Kwangju and Naju City. In this study, 6 times of water quality surveys were done for mainstream and tributaries. Delivery ratios of each tributaries are calculated with the water quality and flow data. With Arc/View GIS, sub-basin are divided and pollution loads are estimated. These data are used for water quality modeling. River quality improvement effects are analysed with 5 scenarios including process upgrade of present WWTPs and construction of new WWTPs. These scenarios are applied for the Youngsan River based on the 7Q10 and Q275. And total wastewater treatment cost in the basin is analysed for each scenario.

한강하류 오염부하의 유출특성 (Runoff Characteristics of Pollutant Loads of the Lower Han River)

  • 유호식
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.479-486
    • /
    • 2012
  • Runoff characteristics of pollutant loads of the lower Han River was studied before full implementation of Total Pollution Load Management System(TPLMS). Magnitude of macroscopic(annual) fluctuation was in the order of Namhan River > Han River > Bukhan River, gross weight TP > gross weight TN > gross weight BOD, gross weight deviation > concentration deviation. Flux variation was higher than that of concentration. Microscopic(weekly) fluctuation showed similar pattern to macroscopic scale. TP showed the highest deviation resulting in the lowest reliability. 60% of annual flux passed during summer 3months resulting in 43-46% pass of gross weight at the lower Han River. Strong correlation was found between flux and gross weight especially in gross weight TN. Gross weight pollution increased as high as 400% while passing Seoul area due to the concentration. The deviation from moving average increased during summer season in the gross weight TP and BOD. Seasonal tendency was confirmed especially in gross weight TN and TP using autocorrelation function.

광주광역시 하천수의 수질 및 오염 (Water Quality and Pollutions of River waters in Gwangju City)

  • 오강호;고영구
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.287-297
    • /
    • 2003
  • To investigate water quality and pollution states of rivers in Gwangju city, total of 30 water samples were taken from the main stream of Yeongsan river, Hwangryong river and Gwangju stream in dry and flood seasons. Physico-chemical characteristics of above streams according to pH-Eh and Piper's diagrams we, typically, assigned to natural river water. In the streams, BOD, COD, T-N and T-P indicating water quality mostly increase toward downstream. Notably, water qualities in area near connection between the Gwangju stream and the main stream of Yeongsan river are polluted over V level in rivers and lakes water quality standard. The pollutions are influenced by lift and agricultural foul waters from Gwangju City and farming areas around upstream branches of the Yeongsan river, reasonably. Besides, heavy metals are below the standard in those streams. So, it is considered that the streams are polluted by not industrial but life/agricultural foul waters.

다변량 해석기법에 의한 금강 하구역의 수질평가 (Evaluation of Water Quality in the Keum River Estuary by Multivariate Analysis)

  • 김종구
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.591-598
    • /
    • 1998
  • This study was conducted to evaluate water quality in the Keum River estuary using principal component analysis. The results was summarized as follow; Water quality in the Keum River estuary could be explained up to 70.40% by three factors which were included in the inffluent loading by the Keum River and Kyungpo cheon(38.99%), seasonal variation and organic matter pollution(19.05%), sediment resuspension and internal metabolism(12.35%). For spatial variation of factor score, artificial pollutant loading is highest at st.1, below Keum River barrage, and decreases toward the outer sea. For annual variation of factor score, factor 1 was highly related to artificial pollutant leading, and it was gently increased in 1994. Also, organic matter pollution, sediment resuspension and internal metabolism were increased to every year. It is necessary to control the nutrient leading by Keum river and Kyongpo cheon for Water quality management of estuary.

  • PDF

지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로 (Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed)

  • 심규현;김경훈;김성민;김용석;김진필
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

탐진강의 총량규제를 위한 오염원별 수계${cdot}$행정구역 허용부하량과 삭감부하량 할당에 관한 연구 (Study on Allocation of Pollution Discharges by Watersheds and Administrative Regions with Pollution Sources for the TMDL (Total Maximum Daily Load) in Tamjin River)

  • 황금록;황대호;백도현;이홍근
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.449-454
    • /
    • 2004
  • This study is to calculate Allocation of Pollution Discharges by administrative region for the TMDL (Total Maximum Daily Load) on Tamjin River. TMDL has the water quality target and value ($BOD_5$, 1 ppm) and is calculated by the QUAL2E model. The expected TMDL for Tamjin River is 1,532,360 kg/day. The calculation showed that the main pollutants are due to the non-point sources in Tamjin River and the aqua-farms are another important sources near the bay. And sources from population and livestock should be reduced, especially aqua-farm source should be managed and eliminated first which is over 14,000 ton/day.