• Title/Summary/Keyword: River gauging

Search Result 89, Processing Time 0.021 seconds

A Synthesis of Unit Hydrograph by a Correlation Analysis between the Basin Characteristics and the Runoff-Characteristics - Han and Geum River Basin - (유역특성과 유출특성간의 상관관계 해석에 의한 단위유량도의 합성 - 한강 및 금강유역 -)

  • 윤용남;선우중호
    • Water for future
    • /
    • v.8 no.1
    • /
    • pp.61-79
    • /
    • 1975
  • An attempt is made to develope a scheme for synthesizing unit hydrograph for any arbitrary small watershed in the Han or Geum River basin, which can be applied in determining various sizes of design flood for flood control prijects. Stage gauging stations, seven in the Han and five in the Geun River basin with rating curves, were selected as subbasins for the analysis. Unit hydrographs of 2-hour duration were derived for several heavy storm events using the storm and the corresponding flood runoff data for each subbasin. The Clark method programmed by the Hydrologic Engineering Center, U.S. Corps of Engineers, was utilized for derivation of instantaneous unit hydrographs which were, in turn, converted into 2-hour unit hydrograph. By averaging the 2-hour unit hydrographs from several storm events a representative 2-hour unit hydrograph was determined for each subbasin and hence a separate derivation of dimensionless unit hedrograph was also possible for the Han and Geum River basins. The physiographic characteristics such as stream length, distance to the centroid of each watershed were correlated with the characteristic parameters of the derived unit hydrograph for the subbasins within two large basins. correlation analyses between the characteristic parameters were also made. These correlation analyses resulted a series of four equations and a dimensionless unit hydrograph for the two large basins, which made it possible to draw a synthetic 2-hour unitgraph for any small watershed within the Han or Geum River basin. A detailed procedure for aplying the derived method for an arbitrary basin is summarized with one sample computation for each of the two basins. A comparison of the actually derived 2-hour unit hydrogrograph and the synthesized one showed a fair agreement. A recommendation is made for the further study.

  • PDF

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

RAINFALL AND RUNOFF VARIATION ANALYSIS FOR WATER RESOURCES MANAGEMENT STRATEGIES

  • Sang-man;Heon, Joo-;Jong-ho;Kum-young
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.111-121
    • /
    • 2004
  • For the long-term strategic water resources planning, forecasting the future streamflow change is important to meet the demand of a growing society. The streamflow variation to the decade-long precipitation was investigated for the two major stage gauging stations in Korea. Precipitation and runoff characteristics have been analyzed at Yongwol stream stage in the Han River as well as Sutong stream stage in the Kum River for the future water resources management strategies. Monte Carlo method has been applied to estimate the future precipitation and runoff. Based on the trend line of 10-year moving average of runoff depth for the historical runoff records, the relation between runoff and the time variation was examined in more detail using regression analysis. This study showed that the surface flows have been significantly decreased while precipitation has been stable in these basins. Decreasing in runoff reflects the regional watershed characteristics such as forest cover changes. The findings of this study could contribute to the planning and development for the efficient water resources utilization.

  • PDF

Determining Floodflows from Basin Characteristic Parameters (유역특성인자(流域特性因子)에 의한 홍수량(洪水量)의 결정(決定))

  • Ahn, Sang Jin;Ryu, Byong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1983
  • The purpose of this study is to provide a method of estimating the frequency of flood magnitudes in ungauged station. Six major station are selected for this study in the Geum River system. For each gauging station in the basin, T-year flood is determined by Weibull plotting position. The derivation of the flood frequency formulae is performed on the basis of estimating method of floods with using the hydrological and geomorphical factors developed by U.S. Geological Survey. It is found that the model in this study can be applied to flood flow estimation of ungauged station in the Geum River basin because the mean characteristics of flood flow is used for the basin.

  • PDF

Dimensionless flow Duration Curve in Natural River (자연하천의 무차원 유황곡선)

  • Park, Sang-Deog
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • Flow duration curves provide a compact summary of streamflow variability. In this study, characteristics of the dimensionless flow duration curve in natural rivers with the unregulated discharge were investigated. An analysis of flow duration characteristics was conducted with discharge data at stage-gauging stations of IHP representative basins and of the major rivers in Korea. Discharge characteristics are dependent on area of watershed. However, flow duration coefficients except drought duration coefficient are independent on that. Abundant flow duration coefficient was constant value. The coefficient of flow duration variability defined in this study as the ratio of the normal stream flow over the drought one is decreased with increasing of the watershed area, which implies that the watershed area affects the drought flow duration variability more than the low flow one. And the coefficient of flow duration variability is increased with the river gradient.

Assessment of EFDC Model for Hydrodynamic Analysis in the Nakdong River (EFDC 모형의 낙동강 하류부 수리해석 적용성 평가)

  • Hur, Young-Teck;Park, Jin-Hyeog
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.309-317
    • /
    • 2009
  • This study analyzed a hydrodynamic behavior using the EFDC model (Environmental Fluid Dynamics Code) in the downstream of the Nakdong River in the case of a storm surge and a localized torrential rainfall caused by a major typhoon, and the sea level rise caused by global warming. The study area is selected Gaduk island with the lower boundary and Jindong with the upper boundary, to investigate the total river hydrodynamic behavior including the estuary. In order to verify this numerical model, the calculated results was compared with the observed stage at each gauging point in case of the storm rainfall in 2003 and 2006. From the results, it was shown that the numerical model(EFDC) has high accuracy and is useful in simulating more various cases.

A Study on Water Level Rising Travel Time due to Discharge of Paldang Dam and Tide of Yellow Sea in Downstream Part of Paldang Dam (팔당댐 방류량과 황해(서해) 조석영향에 따른 팔당댐 하류부 수위상승도달시간 예측)

  • Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.111-122
    • /
    • 2010
  • As the Jamsu-bridge and the floodplains of the Han River can be flooded during the rainy season, the exact prediction of the peak flood time is very important for mitigation of flood hazard. This study analyzes the effect of outflow of Paldang Dam and tide of Yellow Sea on the Han River. A target area is from the Paldang dam to Jeonryu gauging station. Water level of Jeonryu as a downstream boundary condition was estimated through multi linear regression analysis with outflow of Paldang dam and tide level of Incheon, because it was influenced by both a tide of Yellow Sea and outflow of Paldang dam. In this study, Water Level Rising Travel Time of the Jamsu-bridge and some floodplains in the Han River are estimated. Also, The second order polynomial expressions for relationships of outflow of Paldang Dam and Water Level Rising Travel Time were developed considering the outflow of Paldang dam and tide of Yellow Sea.

Stochastic Modelling of Monthly flows for Somjin river (섬진강 월유출량의 추계학적 모형)

  • 이종남;이홍근
    • Water for future
    • /
    • v.17 no.4
    • /
    • pp.281-291
    • /
    • 1984
  • In our Koreans river basins there are many of monthly rainfall data, but unfortrnately streamflow data needed are rare. Analysing monthly rainfall data of Somjin river basin, the stochastic theory model for calculation of monthly streamflow series of that region is determined. The model is composed of Box & Jenkins stansfer function plus ARIMA residual models. This linear stochastic differenced time series equation models can adapt themselves to the structure and variety of rainfall, streamflow data on the assumption of the stationary covarience. The fiexibility of Box-Jenkins method consists mainly in the iterative technique of building an AIRMA model from observations and by the use of autocorrelation functions. The best models for Somjin river basin belong to the general calss: $Y_t=($\omega$o-$\omega$_1B) C_iX_t+$\varepsilon$t$ $Y_t$ monthly streamflow, $X_t$ : monthly rainfall, $C_i$ :monthly run-off, $$\omega$o-$\omega$_1$ : transfer parameter, $$\varepsilon$_t$ : residual The streamflow series resulted from the proposed model is satisfactory comparing with the exsting streamflow data of Somjin gauging station site.

  • PDF

An Analysis of the Effect of Damming on Flow Duration Characteristics of Five Major Rivers in Korea (댐건설(建設)로 인한 5대수계(大水系) 본류(本流)의 유황변화(流況變化) 분석(分析))

  • Lee, Jin Wo;Kim, Hyoung Sup;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.79-91
    • /
    • 1993
  • An analysis of flow duration characteristics of the five major rivers in Korea was conducted with extensive river flow data available. The analysis reveals that, for most river stage-gauging stations at the rivers investigated in this study, the flow duration characteristics have changed drastically at some stations after major dammings in the river basins. Streamflow variability. which is newly defined in this study as the ratio of the 2.5 percents (or 10 day) duration discharge over the 97.5 percents (or 355 day) duration one, was also reduced by the dammings. The result of the study shows that the Han and the Yeongsan rivers have relatively small flow variation, while the Seomjin and the Keum rivers have relatively large now variation, which implies that the latter two river basins need new water resources development.

  • PDF

Development of Empirical Formulas for Storage Function Method (저류함수법의 매개변수 산정식 개발)

  • Choi, Jong-Nam;Ahn, Won-Shik;Kim, Tae-Gyun;Chung, Gun-Hui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.125-130
    • /
    • 2009
  • Storage function method which considers the non-linearity of the relationship between rainfall and runoff has been frequently used to predict runoff in a basin and a flood pattern. However, it is time-consuming to estimate appropriate parameters of every basin and rainfall event, which requires the empirical parameter equation applicable in Korea. In this study, multiple regression analysis is used to develop empirical equations to estimate parameters of Storage Function method using basin characteristics. The basin area, maximum stream length, and stream slope are considered as the basin characteristics as the result of the regression analysis. Collinearity is removed and trial-and-error method is used to choose the most descriptive parameters to the dependent variables in Han River basin which is divided into 30 subbasins. The developed equations are validated using the rainfall events in MunMak gauging station and named as 'Han River equation'. The equation could provide the useful information about Storage Function method parameter to calculate runoff from a basin and predict river stage.