• 제목/요약/키워드: River flow monitoring

검색결과 180건 처리시간 0.022초

수질오염총량관리를 위한 4대강수계 장기유황곡선 작성방안 (Development of Long Term Flow Duration Curves in 4 River Basins for the Management of Total Maximum Daily Loads)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.343-353
    • /
    • 2013
  • Flow duration curve (FDC) can be developed by linking the daily flow data of stream flow monitoring network to 8-day interval flow data of the unit watersheds for the management of Total Maximum Daily Loads. This study investigated the applicable method for the development of long term FDC with the selection of the stream flow reference sites, and suggested the development of the FDC in 4 river basins. Out of 142 unit watersheds in 4 river basins, 107 unit watersheds were shown to estimate daily flow data for the unit watersheds from 2006 to 2010. Short term FDC could be developed in 64 unit watersheds (45%) and long term FDC in 43 unit watersheds (30%), while other 35 unit watersheds (25%) were revealed to have difficulties in the development of FDC itself. Limits in the development of the long term FDC includes no stream monitoring sites in certain unit watersheds, short duration of stream flow data set and missing data by abnormal water level measurements on the stream flow monitoring sites. To improve these limits, it is necessary to install new monitoring sites in the required areas, to keep up continuous monitoring and make normal water level observations on the stream flow monitoring sites, and to build up a special management system to enhance data reliability. The development of long term FDC for the unit watersheds can be established appropriately with the normal and durable measurement on the selected reference sites in the stream flow monitoring network.

실시간 유비쿼터스 하천정보 모니터링 시스템의 개발 (Development of Realtime Ubiquitous River Monitoring System)

  • 장복진;이종국;여운광
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1305-1312
    • /
    • 2006
  • 본 연구는 하천유황 모니터링을 위하여 유비쿼터스 기반의 무선통신기술 인프라를 이용하여 개발한 하천정보 수집용 계측시스템에 관한 것이다. 이 시스템은 사용자에 의하여 자유이동하면서 하천의 수심, 수질 및 유속(유량)을 실시간으로 관측 및 모니터링 할 수 있도록 하였다. 개발된 하천부이 시스템은 하천의 수위, 수질(수온, pH, 탁도, 전도도 등) 자료를 획득함과 동시에 획득 장소의 위치정보를 획득할 수 있도록 GPS 모듈을 추가하였다. 또한 이 하천부이는 무선RF 조정이 가능하여 원하는 위치에서의 정보를 손쉽게 획득할 수 있도록 하였다. 획득된 자료는 자료 중계기(Gateway system)의 Zigbee 무선통신을 이용하여 전송하게 하였으며, GIS 모니터링 툴을 이용하여 자료를 확인하고, 확인된 자료는 CDMA 원거리 무선통신을 이용하여 서버컴퓨터로 전송할 수 있게 하였다. 서버컴퓨터에 전송된 하천의 정보는 DB 자동구축과 함께 웹기반의 실시간 모니터링이 가능하도록 하였다. 연구개발 결과는 독립적인 하천정보 모니터링 시스템으로 활용 가능할 뿐만 아니라 하천교량 세굴과 그 밖의 호수 및 해양 환경 모니터링 시스템 등으로 국내외에 많은 분야에 활용될 수 있을 것으로 판단된다.

  • PDF

하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발 (Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance)

  • 장봉주;정인택
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.

하천수질관리를 위한 시험유역의 운영 (Operation of an Experimental Watershed for River Water Quality Management)

  • 김상호;최흥식
    • 한국습지학회지
    • /
    • 제7권1호
    • /
    • pp.81-91
    • /
    • 2005
  • 본 연구에서는 하천에서의 흐름과 수질변화를 실시간으로 감시할 수 있는 수문 수질관측시스템을 구축하고자 한다. 이를 통해 하천에서의 오염사고에 대비한 수질감시와 수질변화를 모의할 수 있는 하천관리시스템을 구축하고자 한다. 횡성댐 상류 계천 유역에 시험유역을 선정하였으며, 보다 정확한 수문 및 수질자료를 얻기 위해 우량관측소 3개소, 수위관측소 3개소 및 수질관측소 1개소를 설치하여 실시간 수문 수질관측시스템을 운영하고 있다. 이와 같이 구축된 관측시스템을 통해 강우량, 수위, 유속, 유량 및 수질 등과 같은 자료들을 축적하고, 다양한 분야의 활용을 위해 자유롭게 공개함으로써 관측자료에 대한 활용도를 높이고자 한다.

  • PDF

수질오염총량관리 단위유역 유량자료와 하천유량 측정망 자료의 연계성 분석 (Relationship between the Flow data on the Unit Watersheds and on the Stream Flow Monitoring Network)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.55-65
    • /
    • 2013
  • It is very difficult to apply stream flow data directly to the management of Total Maximum Daily Loads because there are some differences between the unit watershed and the stream flow monitoring network in their characteristics such as monitoring locations and its intervals. Flow duration curve can be developed by linking the daily flow data of stream monitoring network to 8 day interval flow data of the unit watershed. This study investigated the current operating conditions of the stream flow monitoring network and the flow relationships between the unit watershed and the stream flow monitoring network. Criteria such as missing and zero value data, and correlation coefficients were applied to select the stream flow reference sites. The reference sites were selected in 112 areas out of 142 unit watersheds in 4 river basins, where the stream flow observations were carried out in relatively normal operating conditions. These reference sites could be utilized in various ways such as flow variation analysis, flow duration curve development and so on for the management of Total Maximum Daily Loads.

2012-2016년 모니터링 자료를 이용한 낙동강 지류·지천 수질 특성 분석 (Water Quality Analysis in Nakdong River Tributaries Using 2012-2016 Monitoring Data)

  • 손영규;나승민;임태효;김상훈
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.680-688
    • /
    • 2017
  • Water quality monitoring for flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations has been conducted in Nakdong river tributaries since 2011. In this study concentrations and loading rates of BOD, T-P, and TOC were analyzed to evaluate water quality monitoring stations using accumulated data at 206 tributary monitoring stations in Nakdong river 2012 ~ 2016. Average concentration ranges for 206 monitoring stations were 0.3 ~ 6.4 mg/L, 0.025 ~ 1.562 mg/L, and 0.6 ~ 10.7 mg/L for BOD, T-P, and TOC, respectively. Additionally, average loading rate ranges were 0.96 ~ 46,040 kg/d, 0.087 ~ 1,834 kg/d, and 1.51 ~ 80,425 kg/d for BOD, T-P, and TOC, respectively. Average concentration for BOD, T-P, and TOC at each monitoring station was evaluated using ambient water quality standards of rivers and water quality regulation level for medium-sized management areas. Average loading rate and specific loading rate (loading rate/drainage basin area) for BOD, T-P, and TOC at each monitoring station was considered to evaluate monitoring stations using suggested classification (BOD, TOC: -1, 1 ~ 10, 10 ~ 100, 100 ~ 1,000, and 1,000 ~ kg/d; T-P: -0.1. 0.1 ~ 1, 1 ~ 10, 10 ~ 100, and 100 ~ kg/d) Using results of this study, various water quality status maps were provided, and three evaluation methods were suggested to determine priority monitoring stations in Nakdong river for rational water quality control and tributaries basin management.

남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정 (Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed)

  • 정강영;김경훈;이재운;이인정;윤종수;이경락;임태효
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

유황곡선을 기반으로 한 환경유량의 개략산정법 (Approximation Method of Environmental Flows based on Flow Duration Curves)

  • 김주철;이상진;고익환;우동현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.933-937
    • /
    • 2010
  • This study aimed at the introduction of desktop method for assessment of environmental flows developed by IWMI(International Water Management Institute) recently and its application to Geum river basin. This scheme simulated the influence on aquatic ecosystem caused by watershed development and in turn the decrease of water quantity keeping the river's own flow regime. It was found to be as very effective method although it had simple structure. Flow duration curves for different environmental classes at Sutong and Gongjoo sites were estimated according to the natural conditional scenario of Geum river basin and the results were relatively compared well with the previous studies. The behaviors of monthly average runoff time series of both sites showed the level of A class. The results of this study would provide the fundamental data to establish the future plans of monitoring or management for aquatic ecosystem of Geum river basin.

  • PDF

낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석 (Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin)

  • 조현경;김상민
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.202-209
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of a sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. Flow and water quality data, such as BOD, COD, SS, T-N, and T-P data, for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS, and T-P were correlated positively with the river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluents and downstream streams, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between the river flow rate and the water quality factors (COD, SS, TP) was high at river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석 (Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin)

  • 조현경;김상민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF