• Title/Summary/Keyword: River environment assessment system

Search Result 118, Processing Time 0.033 seconds

A Study on the Development of GIS based Integrated Information System for Water Quality Management of Yeongsan River Estuary (영산강 하구역 수질환경 관리를 위한 GIS기반 통합정보시스템 개발에 관한 연구)

  • Lee, Sung Joo;Kim, Kye Hyun;Park, Young Gil;Lee, Geon Hwi;Yoo, Jea Hyun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2014
  • The government has recently carried out monitoring to attain a better understanding of the current situation and model for prediction of future events pertaining to water quality in the estuarine area of Yeongsan River. But many users have noted difficulties to understand and utilize the results because most monitoring and model data consist of figures and text. The aim of this study is to develop a GIS-based integrated information system to support the understanding of the current situation and prediction of future events about water quality in the estuarine area of Yeongsan River. To achieve this, a monitoring DB is assembled, a linkages model is defined, a GUI is composed, and the system development environment and system composition are defined. The monitoring data consisted of observation data from 2010 ~ 2012 in the estuarine area of Yeongsan River. The models used in the study are HSPF (Hydrological Simulation Program-Fortran) for simulation of the basin and EFDC (Environmental Fluid Dynamics Code) for simulation of the estuary and river. Ultimately, a GIS based system was presented for utilization and expression using monitoring and model data. The system supports prediction of the estuarine area ecological environment quantitatively and displays document type model simulation results in a map-based environment to enhance the user's spatial understanding. In future study, the system will be updated to include a decision making support system that is capable of handling estuary environment issues and support environmental assessment and development of related policies.

Classification of the Algal Monitoring Points by Histogram Analysis of Chlorophyll-a (Chlorophyll-a의 히스토그램 분석을 통한 녹조발생 우심지역 분류)

  • Lee, Saeromi;Ahn, Chang Hyuk;Park, Jae Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this study, we analyzed the value of Chl-a by histogram to classify the points where algal management is required. The degree of algal bloom by point was analyzed using the ogive curve, and the algal control points were classified into three stages according to the shape of the frequency distribution table. Of the four major rivers, low concentration of Chl-a appeared most frequently in the Han River, while the high concentration of Chl-a was frequently found at the points of the Geum and the Yeongsan Rivers. In the case of the Han River, no apprehensive areas were found thatrequire intensive management, while most points on the Geum and the Yeongsan Rivers required algal management. Finally, the Nakdong River basin was identified as points requiring algal management from the mid to downstream. The results of this study have confirmation of the possibility that the frequency distribution could be used as a supplementary indicator to express the algal bloom.

Establishing Diagnosis Systems for Impaired Stream Ecosystem using Stream/River Ecosystem Survey and Health Assessment (수생태계 현황 조사 및 건강성 평가결과를 활용한 수생태계 훼손원인 진단체계 구축)

  • Lee, Jong-Won;Lee, Sang-Woo;Hwang, Soon-Jin;Jang, Min-Ho;Won, Doo-Hee;An, Kyung-Jin;Park, Hye-Jin;Lee, Junga
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The Stream/River Ecosystem Survey and Health Assessment has been carried out regarding the ecological health of the streams by the Ministry of Environment (MOE), South Korea. However, the sources of impairment of the stream ecosystem and the interactions between the sources, stressors, and the responses of impaired streams have not been taken into consideration. The purpose of this study is to propose the establishment of diagnosis systems for the impaired stream ecosystem because of the need to incorporate the same in the making of the policy to enable the recovery and improvement of the health of the impaired streams or river ecosystem. First, we define the concept of a diagnosis of the impaired stream or river ecosystem through a literature review. Second, through case studies [e.g., US CADDIS (Causal Analysis/Diagnosis Decision Information System), AUS. Eco Evidence, EU WFD (Water Framework Directive)], we try to develop the diagnosis system for the making of policy. In this study, the diagnosis system that is proposed consists of eight steps including the basic data collection, detecting or suspecting impairment, defining the impaired stream reach, identifying the biological impaired cases and listing the candidate causes, illustrating the interactive conceptual diagrams between stressors and responses, investigating the stressors-responses in the field, verifying causes and identifying the probable causes of the impaired cases, and summarizing and proposing the restoration of the streams. The results of this study will support and enable efficient decision-making for sustainable stream restoration and management based on the diagnosis of the probable causes for the impaired complex and the diverse stream ecosystem.

Site Suitability and Developable Amount Assessment for Riverbank Filtration in the Han River (II) (한강에서의 강변여과수 개발을 위한 적지선정 및 개발가능량 산정(II))

  • Lee, Sang-Il;Yoo, Sang-Yeon;Lee, Sang-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.835-843
    • /
    • 2008
  • In Korea, riverbank filtration has drawn attention since 1990's as an alternative having potential to stably meet the ever-increasing water demand. Some cities located in the Nak-dong River Basin are currently supplying water through riverbank filtration. This research is on the application of riverbank filtration for stable water quality in Seoul. For this purpose, we have evaluated developable amount of water with riverbank filtration for the Han River. This paper focuses on the Kwangnaru site, which was selected through a systematic analysis in the companion paper. We have conducted groundwater modeling for a proposed system of wells and an artificial lake. In the Kwangnaru district, the river length to constitute a well system was identified to be about 1,200m, due to the topography and the field condition such as ecosystem preservation zone. After many design changes, it was found that the maximum developable amount of $23.36\;million\;m^3$/year could be obtained, when 16 pumping wells were built in every 80 meters along with an artificial lake upstream.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Assessment of tributary water quality using integrated Water Quality Index (통합수질지수를 이용한 지류지천 수질평가)

  • Kal, Byungseok;Park, Jaebeom;Kim, Sanghun;Im, Taehyo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.311-317
    • /
    • 2017
  • In this study, the water quality index was calculated using the water quality monitoring data in the Nakdong River water system and the water quality status was compared with the living standard. The water quality index was selected by the RWQI method CCME-WQI currently used by the Ministry of Environment. The water quality items were selected as 7 items for pH, DO, EC, water temperature, TOC, T-N and T-P. The evaluation period was selected from the last three years (2013~2015) and water quality monitoring data measured within the period were used. As a result of the evaluation, the results of the previous evaluation showed similar tendency to the index of living environment, but the monthly evaluation showed different BOD and T-P results. Therefore, it is concluded that it is more reliable that more complex evaluation than single water quality evaluation is needed for efficient river management.

A Study on Redesign of Spatial Data Structure of Korean Reach File for Improving Adaptability (하천망분석도(KRF)의 활용성 증대를 위한 공간데이터 구조 개선에 관한 연구)

  • Song, Hyunoh;Lee, Hyuk;Kang, Taegu;Kim, Kyunghyun;Lee, Jaekwan;Rhew, Doughee;Jung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.511-519
    • /
    • 2016
  • National Institute of Environmental Research (NIER) has developed the Korean Reach File (KRF) for scientific and systematic analysis of variables related to water quality, pollutant sources and aquatic ecosystems in consideration of steam reach networks. The KRF provides a new framework for data production, storage, management and analysis for water related variables in relation to spatial characteristics, connections, and topologies of stream reaches. However, the current version of KRF (ver.2) has limited applicability because its nodes include not only the stream points based on topological characteristics but also those based on water quality monitoring stations, which may undermine its generality. In this study, a new version of KRF (ver.3) was designed and established to overcome the weak point of version 2. The version 3 is a generalization of the old KRF graphic data and it integrates the attribute data while separating it from the graphic data to minimize additional work that is needed for data association and search. We tested the KRF (ver.3) on actual cases and convenience and adaptability for each application was verified. Further research should focus on developing a database link model and real-world applications that are targeted to process event data.

Development of Vegetation Indicator for Assessment of Naturalness in Stream Environment (하천환경의 자연성 평가를 위한 식생지표의 개발)

  • Chun, Seung-Hoon;Chae, Soo-Kwon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.384-401
    • /
    • 2016
  • The vegetation assessment indicator has been developed recently as a biological part of the integrated assessment system for river environment to improve the efficiency of river restoration projects. This study carried out to test the vegetation assessment indicator and to reset its grade criteria on experimental streams. We classified and mapped vegetation communities at the level of physiognomic-floristic composition by each assessment unit. A total of 204 sampling quadrats were set up on the 68 assessment units at 5 experimental streams. By analyzing the vegetation data collected, we examined the appropriate numbers of sampling quadrats, the criteria of vegetation index score, classification of vegetation community, and grade criteria for vegetation assessment. The developed vegetation assessment indicator composed with the vegetation complexity index (VCI), the vegetation diversity index (VDI), and the vegetation naturalness index (VNI) was proved to reflect the current conditions of the streams sufficiently. The contribution of vegetation naturalness index to grading by vegetation assessment indicator was larger, but three indexes were closely correlated to each other. Also there was more clearer discrimination of grading with the application of adjusted criteria of vegetation assessment indicator and the standardized classification of vegetation community, but the stream segment type did not influence the vegetation assessment grade significantly.

Assessment of Riverine Health Condition and Estimation of Optimal Ecological Flowrate Considering Fish Habitat in downstream of Yongdam Dam (용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정)

  • Hur, Jun-Wook;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.481-491
    • /
    • 2009
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in the upper Geum river. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, richness and dominance indexes, bio-diversity (dominance index, diversity, evenness and richness), and index of biological integrity were assessed, and optimal ecological flowrates were estimated using the habitat suitability indexes established for three fish species Coreoleuciscus splendidus, Zacco platypus and Pseudopungtungia nigra selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two sensitive species of C. splendidus (22.4%) and Z. platypus (22.0%) dominated the fish community. The estimated IBI values ranged from 34 to 42 with average being 38 out of 50, rendering the site ecologically fair to good health conditions. An optimal ecological flowrate of 9.0 cms was recommended for the representative fish species at the site.

Building technical and institutional capacities towards new river maintenance (새로운 하천 유지관리를 위한 기술적·제도적 역량 강화 방안)

  • Lee, Sangeun;Park, Jin-Won;Rhee, Dong Sop;Lee, Du Han;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.849-862
    • /
    • 2021
  • Laws, administrative rules, and task manuals have been revised to build a modern river maintenance system in Korea for the last decade. And various researches and technology developments have been carried out to resolve related issues. However, the recent enactment of the new Act and the catastrophe of flood damage in 2020 have accelerated more emphasis on the reorganization and reinforcement of the river maintenance system in terms of political and social aspects. In this study, we suggested promising directions for strengthening the technical and institutional competencies of river maintenance with respect to policy, R&D, planning, and technology. The open discussion was held with the participation of industry, academia, research institutes, and government officials, and all participants conducted the related survey to collect their opinions effectively. These results are expected to be used as a reference to secure the justification for integration of government organizations, planning of R&D, the introduction of new river maintenance, and related technology development when reestablishing and reinforcing the river management system in the future.