• Title/Summary/Keyword: River environment

Search Result 3,077, Processing Time 0.029 seconds

Analysis of Regional Environment in the Nak-Dong River Watershed using Geographic Information System (지리정보시스템을 이용한 낙동강 유역권의 광역환경분석)

  • Jung, Sung-Kwan;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.12-22
    • /
    • 2000
  • Recently urbanization and industrialization around the Nak-dong river watershed have lead to the regional environmental problems. In this viewpoint, we took up variables which were related to watershed environment, and found out spatial and environmental properties of the Nak-dong river using factor analysis, ANOVA test and geographic information system. The results may be summarized as follows; three common factors which were named as urban, agricultural and industrial pollutant factor extracted from statistical methods. Spatial distribution of watershed environment could be found by connection attributes of factor scores derived from factor analysis to digital map using GIS. According to the results, distribution of pollutant sources were concentrated in the main stream of the Nak-dong river and its tributaries, Kum-ho river. So it is necessary to manage the watershed environment in due consideration of environmental carrying capacity.

  • PDF

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

Coliform Pollution Status of Nakdong River and Tributaries (낙동강수계 본류와 유입지천의 대장균군 오염도)

  • Lee, Hae-Jin;Park, Hae-Kyung;Lee, Jae Hak;Park, A Reum;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The aim of this study was to analyze spatial and temporal patterns of bacterial pollution levels and the relationship between bacterial pollutants and environmental parameters at the main stream and tributaries of Nakdong River. Water quality data including total coliform and fecal coliform were compiled from a total of 50 monitoring sites (30 at the main stream and 20 at the tributaries) along with rainfall and discharge data for three consecutive years from 2012 to 2014. During the study periods, the geometric mean values of total coliforms and fecal coliforms in the main stream were 74 (22~465) CFU/100 mL and 8 (3~42) CFU/100 mL, respectively. The geometric mean values of total coliforms and fecal coliforms in the tributaries were 275 (36~5,145) CFU/100 mL and 6 (1~1,352) CFU/100 mL, respectively. High concentrations of fecal coliforms were observed at Gumi (M 10), Hyeonpung (M 19), Hapcheon (M 23), and Namji (M 25) in the main stream, whereas Gamcheon (T 6), Bakcheon (T 7), Geumho-gang (T 8), and Gyeseongcheon (T 16) were identified as pollution hot spots in the tributaries. Although bacterial pollution levels showed complex behavior across monitoring sites and time, the highest coliform concentrations were routinely observed in the monsoon season between July and September of each year, indicating that the pollution levels were strongly dependent on precipitation in addition to other physiochemical parameters. Statistically significant correlations were found between fecal coliform concentrations and precipitation (r=0.403, p<0.01), followed by SS (r=0.425, p<0.01), nutrient TP (r=0.388, p<0.01), organic matter COD (r=0.322, p<0.01), and PO4-P (r=0.317, p<0.01) in the main stream in the order of correlation coefficient from high to low.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

A Study on Improvements of Eco-Natural Map Preparation Guideline through an Assessment of River - Focused on the Hwang River - (하천평가기준을 반영한 생태·자연도 작성지침 개선방안 연구 - 황강을 대상으로 -)

  • Kim, Dae-Young;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.19-29
    • /
    • 2012
  • The purpose of this study is to suggest improvements of Eco-Natural map preparation guideline by presenting assessment methods that can be applied to the result of river ecosystem health survey and assessment, using the Geographic Information System. The area for studying is the main stream of the Hwang River where is easy to collect data and available to compare before and after of river assessment. It was reevaluated by reflecting the result of river ecosystem health assessment of the Ministry of Environment. As the result, Eco-Natural map of the study area reflecting the river assessment, the changes in the area ratio by grade have been increased from 1.14% to 14.03% in the first-grade and from 24.64% to 43.91% in the second-grade. It is considered to present more realistic grade due to the assessment of the rivers that have not been reflected in the meantime. Consequently, the result of this study will be useful for establishing the development projects on the rivers, providing the foundation for more realistic and active protection.

Time Lags between Hydrological Variables and Phytoplankton Biomass Responses in a Regulated River (the Nakdong River)

  • Kim, Myoung-Chul;Jeong, Kwang-Seuk;Kang, Du-Kee;Kim, Dong-Kyun;Shin, Hyun-Suk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.221-227
    • /
    • 2009
  • This study describes time lag responses between hydrological variables and phytoplankton biomass in a regulated river system, the lower Nakdong River in South Korea. The lower Nakdong is a typical flow-controlled lotic system, and its limnological characteristics are influenced by climatic variation such as monsoons and summer typhoons. Mean rainfall in the area during summer is about 1,200 mm, which comprises >60% of annual rainfall. Our results show that the regulation of flow in the Nakdong by multi-purpose dams from 1995 to 2004 affected phytoplankton dynamics. Diatom blooms occurred in winter, when the limited discharge allowed for proliferation of the phytoplankton community. Using multiple regression analysis, we detected significant time-delayed relationships between hydrological variables and phytoplankton biomass. These results may be useful for water resource managers, and suggest that 'smart flow' control would improve water quality in large regulated river systems of the Republic of Korea.

Characteristics of Organic Matters in the Suyeong River During Rainfall Event (강우 시 수영강 유역 내 유기물질의 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.

Analysis of Water Quality Improvement Effect by Securing Water Quality Characteristics and Flow Rate in the Geumho River (금호강 수질특성 및 유량확보에 따른 수질개선 효과 분석)

  • Kwak, Insoo;Choi, Boram;Jeon, Hyeryn;Kim, Sunae;Bae, Jaehyeong;Kim, Shin;Kim, Jungmin
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.414-429
    • /
    • 2020
  • For the management of rivers, the target water quality is set by establishing the total amount of water pollution and water environment basic plan. For Geumho river T-P has achieved the target water quality, but for BOD, COD, TOC the target water quality of the water environment basic plan has been exceed for the past five years. Therefore, the flow rate for satisfying the target water quality was simulated by analyzing the load, load density, and pollution contribution rate of the Geumho river using BOD, COD, TOC and by utilizing QUAL-MEV a one-dimensional water quality model. According to the analysis of the load, the BOD, COD and TOC all showed the highest levels at the Geumho C point at 9,832.2 kg/day 20,656.6 kg/day, and 15,545.1 kg/day. The load density was highest at 9.47 kg/day/㎢, 37.55 kg/day/㎢, 30.20 kg/day/㎢, and 17.19 kg/day/㎢, 39.14 kg/day/㎢ in Dalseocheon stream during the wet seasons and dry seasons. Pollution contribution rate was highest at about 25 percent for Palgeocheon stream during the wet season and about 50 percent for Dalseocheon stream during the dry season. In addition, the correlation analysis between organic materials showed in the main stream and tributaty of the Geumho river that COD-TOC was 0.8 or higherthan BOD-COD and BOD-TOC in both the wet seasons and dry seasons. And after surveying the total amount of water pollution and the target quality of the water environment basic plan at Geumho C, it was analyzed that an additional flow tate of 14 times and 22 times was needed as of April 2019 (3.46 ㎥/sec).

Effects of river space restoration on biodiversity in the Mankyung river (만경강 하천공간 복원이 생물다양성에 미치는 영향)

  • Jeon, Ho-Seong;Kim, Kyuho;Hong, Il;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.865-873
    • /
    • 2019
  • The purpose of this study is to develop and apply a river space restoration framework considering various functions of river basin system. In particular, we will present sustainable river basin management directions by quantifying the effect of improving the aquatic ecosystem through the restoration of river space. For this purpose, the present problems are derived from functional aspects of the river basin, and the river area restoration framework linked with the individual outcome indicators is constructed to evaluate the restoration effect by each function. The ecological impact of restoration of river area was quantitatively analyzed by introducing ecotope concept. As a result of the comparison of restoration effects by creating three kinds of river area restoration scenarios, the construction of suitable habitat such as backswamp in the expanded area has shown favorable results in expanding biodiversity. The diversity evaluation of ecotope in conjunction with the hydraulic and hydrological characteristics of the year will not only provide the expected effects of restoration of river space but will also serve as a criterion about post-project monitoring for outcome evaluation.

River level/velocimetry measuring system using the ultrasonic sensor (초음파센서를 이용한 하천 수위/유속 측정 시스템)

  • Park, Hee-Suk;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.249-255
    • /
    • 2006
  • In this paper, we study the river level/velocimetry measuring system using the ultrasonic sensor to acquire the more precise data from the river circumstance in rainy season. We design the two ultrasonic sensor system to calculate the water level and surface current speed of the river using the dedicated hardware and software. We investigate the validity and effectiveness of the proposed system which applied to the real river environment monitoring system that will be extended to the GIS.

  • PDF