• 제목/요약/키워드: River discharge

검색결과 1,266건 처리시간 0.029초

자동유량측정에 의한 한강대교 조석영향 분석 (Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement)

  • 이민호;김창완;유동훈
    • 한국수자원학회논문집
    • /
    • 제42권7호
    • /
    • pp.513-523
    • /
    • 2009
  • 한강대교지점은 조석의 영향을 받고 노들섬으로 인해 흐름이 나누어지는 특수한 지형조건을 가지고 있으며, 홍수예보지점이고 한강유역의 유출량을 분석하는 대표지점이기도 하다. 따라서 정확한 수위-유량관계를 도출하기 위하여 많은 노력을 기울였으나 조석의 영향을 받지 않는 홍수기 이외의 기간에 대한 정확도의 확보가 곤란하였다. 이러한 문제를 해결하기 위한 대책으로 최근 자동유량측정에 관한 연구가 진행되었고, 실무에 적용되어 한강대교지점에서 실시간 유량자료의 획득이 가능하게 되었다. 한강대교지점에는 남단(노량진방향)과 북단(용산방향)에 2대의 자동유량측정 시설을 설치하여 운영하고 있다. 수중에 설치된 도플러방식 수평초음파유속계(H-ADCP)가 23개 각도로 회전하며 10분마다 단면의 유속자료를 생산하고, Chiu의 유속분포(Chiu, 1988)를 이용하여 유량을 계산한다. 본 고에서는 자동으로 측정된 성과와 기존의 유량측정 방법에 의한 성과를 비교하였으며, 월별 유출량에 대한 분석결과를 제시하였다.

감조하천에서 조위 및 유량조건에 따른 역류 분석 (Analysis of Flow Reversal by Tidal Elevation and Discharge Conditions in a Tidal River)

  • 송창근;김형준;이동섭
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.104-110
    • /
    • 2014
  • The Han River is the only waterway in Korea where estuary is not blocked by dykes so that tidal water is flowing in and out through the tidal reach. The extreme tidal range in the Yellow Sea causes an intense flood current, stretching over horizontal extents of tens of kilometers into the rivers. To elucidate the flow reversal by discharge conditions and transient tidal level in the Han river, numerical simulations were conducted under 7 boundary conditions for two days with 10 minute time step. As the flow conditions changed from low discharge and high tidal difference to high discharge and low tidal difference, the flow reversals became weaker and the velocity of forward flow direction became higher due to the increased flow momentums and decreased tidal differences. In the case of normal flow, the maximum reverse velocity was 0.4 m/s, which was equivalent to the maximum forward velocity. In addition, the pattern of the development and decay of forward and reverse flow was presented.

Estimating Groundwater Level Change Associated with River Stage and Pumping using Time Series Analyses at a Riverbank Filtration Site in Korea

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoung-Soo;Lee, Soo-Hyoung;Park, Heung-Jai
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1135-1146
    • /
    • 2017
  • At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.

낙동강 주요지점에서 유량-수질의 관련특성에 관한 연구 (A Study on the Related Characteristics of Discharge-Water Quality in Nakdong River)

  • 조현경
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.373-384
    • /
    • 2011
  • This study aims at the examination of the relative characteristics of discharge and water quality in river basins using statistical methods. For it, water quality and discharge data was collected in observed stations of Nakdong river and carried out correlation analysis, regression analysis, factor analysis and cluster analysis. And it was investigated the applicability of water quality prediction using Nearest-neighbor method. As a result, it grasped a trenditional characteristics and mutual relations between discharge an water quality data. Therefore, this results were suggested the comprehensive data and methods for a management of water quality, effective operation and policy development in Nakdong river basin.

양산천 수위-유량 관계곡선의 유도에 관한 연구 (A Study on Derivation of Rating Curve for Yangsan River)

  • 이용희;이상배
    • 한국항만학회지
    • /
    • 제12권1호
    • /
    • pp.131-143
    • /
    • 1998
  • This paper presents derivation of stage-discharge curve for Yangsan river. To derivate of stage-discharge lationship is one of the essential research areas in the water resource field. It provides reliable data a long term planning and hydrologic quantity on water resource development by quantitative analysis. The rating curve derivated through 15 discharge-observation on Yangsan river basin in 1997 has been estimated Q=1283.0262-1553.3158H+477.2702H2. According to the rating curve, the highest water level 2.6m, the limited water-level should be bound to the maximum of 2.6m. Before this research, stage-discharge curve of Yangsan river has not been developed, and only 15 discharge observation(hydrometry) has been carried out though this research. Therefore it seems necessary to collect observation data through a long term process to obtain a reliable rating curve equation.

  • PDF

다양한 유량 측정기기와 ADCP를 이용한 유량 비교 분석 (Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP)

  • 지주연;박승용;이광우;박경민;황순홍;김동호;이영준
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.251-257
    • /
    • 2013
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980's. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002, FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was $10.412m^3/s$, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.

전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구 (Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model)

  • 류영;지희숙;황승언;이조한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.

면적비를 적용한 미계측유역에서의 설계홍수량 산정방안 (Estimation of Design Flood Discharge by Areal Ratio for Ungauged Basin)

  • 이지호;박재범;송양호;전환돈;이정호
    • 한국습지학회지
    • /
    • 제19권3호
    • /
    • pp.335-344
    • /
    • 2017
  • 본 연구에서는 미계측유역의 설계홍수량을 산정하는 방안으로 유역의 면적비를 적용하는 방안을 제안하였다. 이를 위해 유역출구에서의 실측자료를 활용하여 유출매개변수를 결정하고 면적비를 적용하여 첨두홍수량을 산정하였다. 위 방법론을 검증하기 위해 소하천 유역의 관측유량 및 하천정비종합계획의 설계홍수량과의 비교를 통해 면적비 전이 방법론의 타당성을 검토하였다. 그 결과를 정리하면 다음과 같다. 면적비를 적용한 유출량과 관측유량자료를 비교한 결과 14~25% 정도의 차이를 보였다. 제안된 방법론의 타당성을 재확인하기 위해 하천정비종합계획에서 산정된 첨두유량과 소유역과의 면적비로 계산한 첨두유량을 비교하였다. 이를 위해 31개소의 소하천을 대상으로 설계홍수량을 비교한 결과, 20% 정도의 홍수량의 차이가 발생하였다. 따라서 면적비를 적용한 미계측지역에서의 첨두유량 산정방법론이 타당하다고 판단된다.

Flushing 방류로 인한 섬진강 하구부 염수침입 영향분석 (Analysis of Saltwater Intrusion by Flushing Discharge in the Seomjin River Estuary)

  • 노준우;이진영;신재기
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.325-335
    • /
    • 2011
  • Estuary is a transitional zone between river and ocean environment that receives the maritime and riverine influence simultaneously. Estuaries are the most productive habitats because their incoming water provides large quantities of nutrients. The Seomjin River estuary, located in the middle south of Korea, has no barrage and shows natural characteristic of estuary. However, due to dredging and reclamation the environment of the estuary has been changed significantly in the river mouth. In addition, increased freshwater intake in midstream of the Seomjin River results in salinity intrusion. In this paper salinity variation in downstream estuary of the Seomjin River has been simulated and tested using EFDC model. The results of simulation were compared with measured data collected at three points, Culture & Art Center, Sumjin Iron Bridge, and Mokdori, located at 9Km, 14Km, and 15.5Km respectively from downstream estuary. Based on the simulated results, the contribution of the flushing discharge has been evaluated in preventing the salinity intrusion by increasing the discharge flowrates released from the Juam dam.

상류 댐 플러싱 방류가 금강의 겨울철 암모니아성 질소 농도 저감에 미치는 효과분석 (Impact of a Flushing Discharge from an Upstream Dam on the NH3-N Concentrations during Winter Season in Geum River)

  • 정세웅;김유경
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.609-616
    • /
    • 2005
  • A high ammonia nitrogen ($NH_3-N$) concentration has been recursively observed every winter season in Geum River, which hindered chemical treatment processes at a water treatment plant. A flushing discharge from Daecheong Dam was often considered to dilute $NH_3-N$, but information on the quantitative effect of flushing on the downstream water quality was limited. In this study, the impact of a short-term reservoir flushing on the downstream water quality was investigated through field experiments and unsteady water quality modeling. On November 22, 2003, the reservoir discharge was increased from $30m^3/sec$ to $200m^3/sec$ within 6 hours for the purpose of the experiment. The results showed that flushing flow tends to reduce downstream $NH_3-N$ concentrations considerably, but the effectiveness was limited by flushing amount and time. An unsteady river water quality model was applied to simulate the changes of nitrogen concentrations in response to reservoir flushing. The model showed very good performance in predicting the travel time of flushing flow and the effect of flushing discharge on the reduction of downstream $NH_3-N$ concentrations at Maepo and Geumnam site, but a significant discrepancy was observed at Gongju site.