• Title/Summary/Keyword: River Law

Search Result 108, Processing Time 0.028 seconds

An Estimation of River bed Profile of the Stream System based on the Potential Energy Concept (位置에너지 槪念에 依한 水系의 河川縱斷 推定)

  • Ahn, Sang-Jin;Kang, Kwan-Won;Kim, Chang-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.76-88
    • /
    • 1982
  • The stream morphological characteristics of a basin have important influence upon the analysis of runoff. In this study, the laws of stream morphology-the law of average stream fall and the law of least rate of potential energy expenditure-which were derived based on the analogy of entropy in thermodynamics are introduced and their validity is analysised with the data taken from the topographic maps covering the whole Geum River system. The first law is the Law of Average Stream Fall which states that under the dynamic equilibrium condition the ratio of average fall between any two different order stream in the same river basin in unity. The second law is the law of least rate of energy expenditure which states that all natural streams are intended to choose their own course of flow such that the rate of potential energy loss per unit mass of water this course is a minimum. The parameters representing the morphological characteristics of 13 tributaries in the Geum River system such as stream bifurcation ratio and stream concavity were Computed from the Horton-Strahler's laws and are used to check the law of average stream fall. The result showed that the law of average stream fall agrees reasonably well with law of Horton-Strahler. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Based on Horton's Law and the law of average stream fall, longitudinal stream profiles can be calculated.

  • PDF

Power-law exponents of runoff-drainage area relationships vary with flow occurrence frequency: Observations from Korean rivers

  • Kim, JongChun;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.246-246
    • /
    • 2015
  • Runoff at any given location along a stream can be expressed as a function of its upstream area. The runoff-drainage area relationship can be well expressed as power-law (Brush, 1961) with its exponent, ranging as high as unity (e.g., Stall and Fok, 1968) and as low as 0.5 in natural rivers. Here, we study the runoff-drainage area relationships for Han River and Nakdong River, Korea. We find that the relationships follow power-law and their exponents are highly related with occurrence frequency of flow. To support this, we analyze flow frequency with historical data measured over decades. Findings in this study can broaden our understanding on mechanisms behind the catchment response to runoff.

  • PDF

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

Improvement of river environment management effectiveness (하천 환경 관리 실효성 개선방안에 대한 고찰)

  • Yeo, Hong Koo;Kang, Joon-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1155-1163
    • /
    • 2022
  • Since the introduction of the eco-friendly concepts in river management more than 40 years ago, many efforts have been made, such as the improvement of laws and systems, and research and development, and now river environment management is becoming the main issue of river management along with the flood damage reduction. This paper reviewed the history of improvement in relevant laws, and the current river plans prescribed by law. And as a way to improve the effectiveness of river environment management, the importance and implementation method of the level of naturalness survey of physical habitats in rivers were proposed.

Analysis of drainage structure for river basin on the basis of power law distribution (멱함수 법칙분포를 기반으로 한 유역의 배수구조에 대한 해석)

  • Kim, Joo-Cheol;Kang, Heeseung;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.495-507
    • /
    • 2016
  • This study aims at hydrologically demonstrating the universality of power law distribution by analyzing runoff aggregation structures of river basins. Power law distribution is fitted to cumulative drainage area of basins of interest by maximum likelihood, which results in the power law exponents. And then those exponents are assessed in terms of the shape of catchment plan-form. As a main result all of the basins in this study have similar distributions of catchment area. The exponents from this study tend to be higher than the ones from previous researches reflecting self-similar property of the catchment plan-forms of interest. Further study is required about the universality of power law distribution by means of the more realistic flow routing scheme within the framework of DEM.

Surveying irrigation water withdrawls for river operation (하천운영을 위한 농업용수 취수량 조사)

  • 김현준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.47-50
    • /
    • 1999
  • From 1997 irrigation water withdraws has been surveyed for the purpose of river operation and management . Recently , the River Law was revised (1999.2.8) and obligate to water users to report their proposed and actual water withdrawals. If we can save more water from rice paddy area, we can use more water for municipal and industrial activity and we can expect water quality should be improved in the river. So the role of irrigation water use efficiency is more and more important.

  • PDF

The Effect of The Special Law on the Waterfront-Space Use on Space and Landscape Change of Four Major Rivers - Focused on the EcoDeltaCity Project of Nakdong River - (4대강 친수구역 활용에 관한 제도가 하천 유역의 공간 변화에 미치는 영향 분석 - 낙동강 유역 에코델타시티 지역을 대상으로 -)

  • Kim, Jong Gu;Kim, Yu Jun;Kang, Youn Won;Hong, Ji Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.699-710
    • /
    • 2014
  • Government enacted "The special Law on the waterfront-space" to conduct four-river refurbishment project and to construct systematically regions around national rivers from 2009. This law allows public apartments and recreational facilities etc. to be located around four-river, then the law may give rise to serious space change and landscape damage. So we draw some problems of the established development project about the riverside area, and expected a space and landscape change of waterfront-space with a 3D simulation. The result, it is important to adjust the development density of site and apply various contents with take the regional characteristics into consideration for sustainable development.

Review on Water Quality and Achievement of Water Quality Goal by Various Evaluation Methods in Geum River (다양한 평가기법을 이용한 금강 대권역의 수질 및 목표수질기준 달성도 평가)

  • Lee, Jae-Woon;Jeong, Hye-Sung;Yoon, Jung-Hee;Cheon, Se-Uk
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • The Ministry of Environment plans to improve quality of water which is achieved over 85% in rivers and 94% in lakes of the whole country as "Good Water" until 2015. Also, the law of evaluation of water quality and water quality goal were made newly. So, the water quality has evaluated by using new law since 2007. This study evaluated whether "Good Water" and" Water Quality Goal" were achieved or not in 22 middle-sized districts and major 10 lakes of Geum river. The achievement rates of rivers decreased and the achievement rates of lakes mostly were the same for 5 years. In 2007, the achievement rates of "Good Water" were 50% in rivers and 50% in lakes. The achievement rate of "Water Quality Goal" were 59.1% in rivers and 20% in lakes. The water quality in 2007 was evaluated worse than last year in case of rivers. The evaluations of Korea-Comprehensive Water Quality Index(K-CWQI) showed that achievement rates of "Water Quality Goal" were 81.8% in rivers and 0% in lakes. The statistical correlation analysis showed that correlations between BOD and COD were meaningful at the downstream, compared to upstream, generally. In case of lakes, correlations between COD and temperature were meaningful. Also, correlations between COD and Chl-a were meaningful. The Trophic State Index ($TSI_{KO}$) showed that the half of lakes are major over eutrophic status in lakes. These analytical methods such as K-CWQI, $TSI_{KO}$, statistical correlation analysis could be additionally helpful for evaluation of water quality and provide basis data for understanding characteristics of watershed in Geum river.

THE CLASSIFICATION SYSTEM OF RIVER HEALTH FOR THE ENVIRONMENTAL WATER QUALITY MANAGEMENT

  • Carolyn G. Palmer;Jang, Suk-Hwan
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • South Africa has developed a policy and law that calls and provides for the equitable and sustainable use of water resources. Sustainable resource use is dependent on effective resource protection. Rivers are the most important freshwater resources in the country, and there is a focus on developing and applying methods to quantify what rivers need in terms of flow and water quality. These quantified and descriptive objectives are then related to specified levels of ecological health in a classification system. This paper provides an overview of an integrated and systematic methodology, where, fer each river, and each river reach, the natural condition and the present ecological condition are described, and a level/class of ecosystem health is selected. The class will define long term management goals. This procedure requires each ecosystem component to be quantified, starting with the abiotic template. A modified flow regime is modelled for each ecosystem health class, and the resultant fluvial geomorphology and hydraulic habitats are described. Then the water chemistry is described, and the water quality changes that are likely to occur as a consequence of altered flows are predicted. Finally, the responses to the stress imposed on the biota (fish, invertebrates and vegetation) by modified flow and water quality are predicted. All of the predicted responses are translated into descriptive and/or quantitative management objectives. The paper concludes with the recognition of active method development, and the enormous challenge of applying the methods, implementing the law, and achieving river protection and sustainable resource-use.

  • PDF

Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas (소유역 및 대유역 홍수유출모형의 적용)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.87-104
    • /
    • 2003
  • A numerical model of surface runoff and river flow has been applied to small- and large-size catchment areas in order to investigate the physical characteristics of river flow during flood period. Several refinements are made on the existing model SIRG-RS for the ways of rainfall input through surface runoff, river junction treatment and the computation of river flow on steep slope. For the computation of frictional forces, employed is the power law of friction factor which is a function of Reynolds number and relative roughness height. The empirical equation of friction factor is developed using recent field data as well as laboratory data. The refined model has been applied to small-size catchment area as well as large-size catchment area, and the computation results are found in good agreement with the observations in both cases.