• Title/Summary/Keyword: River Basin

Search Result 2,356, Processing Time 0.043 seconds

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept (Fractal 나무의 개념을 기반으로 한 설마천 시험유역의 Fractal 차원 추정)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.

A Study on the Administration for the Han River Water Quality Control (漢江 水質保全 行政에 관한 硏究)

  • Kim, Kwang Hyop
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.2
    • /
    • pp.9-40
    • /
    • 1984
  • This thesis purports to overview the diverse administrative and organizational factors and plannings developed by the government organizations, municipal or otherwise, to tackle the Han River water pollution issues in the past years. This thesis also looks into the ever-worsening Han River water pollution problems, in particular, in terms of the various government plans ostensibly designed to reduce the pollution level but with little success. Also dealt with are the efficiencies with which the laws and decrees on water pollution the administrative organizations put to use in the prosecution of the diverse antiwater pollution projects involving the Han River basin. From the early 1960's up to the 1970's the government had concentrated on the growth-oriented economic policy with the result that little attention had been paid to the water pollution and other environmental issues that are bound to arise from the massive economic growth. Belatedly, the five-year Hah River Development Project was initiated in 1982 with emphasis on reducing the water pollution level at Hah River to the minimum. The following are the gists of the thesis and recommendations for the future antiwater pollution plans by the administrative organizations: 1. Documents to date indicate that the irrigation projects along the Han River area had been the main focus of attention during the Yi Dynasty and under the Japanese rule of the country. 2. Despite that the water pollution issue became the subject of many debates among the academic and research institutions in the 1960's and in the 1970's, the administrative organizations in charge of the Han River water quality control failed to come up with a concrete plan for the river's water quality control. 3. Nevertheless, the water pollution of the Han River area in fact began in the 1950's, with the unprecedented concentration into Seoul of population and the industrial facilities on a larger scale, in particular, enforced by the government's strong growthoriented policy in its Economic Development plans in the 1960's. 4. Starting in the 1960's, the Han River water pollution level dramatically increased, but the government was reluctant to promulgate or put into effect strong measures to curb the many factors contributing to the river water pollution, thus worsening the environmental issues along the Han River basin. 5. The environmental protection law and other laws and decrees relating to the antiwater and air pollution issues that were subsequently put into effect underwent so many changes that efficient anti-water pollution policies could not be effected for the Han River basin. The frequent organizational reshuffle within the administrative units concerned with environmental problems has resulted in the undue waste in personnel management and finance. 6. The administration on the environmental protection could not be efficiently carried out due to the organizational overlapping. Under the existing law, frequent organizational frictions and inefficiency are bound to occur among the central government offices themselves, as well as between the central government and the Seoul city administration, and among the city's administrative offices over the conservation of the Han River basin and over the river's anti-water pollution issue. 7. In the planning and prosecution of the Han River project, political influences from the president down to the lower-level politicious appear to have been involved. These political influences in the past had certainly had negative influence on the project, nevertheless, it appears that in the recent years, these political influences are not all that negative in view of the fact that they serve as a positive contributing factor in developing a better water quality control project along the Han River basin. The following are a few recommendations based on the data from the thesis: First, officials in charge of the Han River water quality control should pay attention to a careful screening of the opinions and recommendations from the academic circles and from the public should be made so that the government could better grasp the core issues in the environmental problems that require preventive and other necessary measures. Second, vigorous redistribution policies of population and industrial facilities away from the Seoul area should be pursued. Third, the government should refrain from revising or revamping too frequently the laws and decrees on the anti-water pollution, which is feared to cause undue inconveniences in the environmental administration. Fourth, a large-scale streamlining should be made to the existing administrative organization in an effort to do away with the inter- and intra-organizational friction. It is recommended that a secretariat for the Hah River basis conservation be established. Fifth, High-level administrative officials, with a thorough knowledge and vision on the Han River water quality control, should be prepared to better deal with the budgeting and personnel management for the Han River water pollution control not only at the control government, but also at the Seoul city municipal government levels. Environmental issues should be kept distinct from political issues. Environmental issues should not serve as a window-dressing for sheer political purposes. Sixth, the Hah River proiect should also include, along with the main Han River basin, those areas covering North Han River, South Han River, and the tributaries to the main river basin. The 'Han River Basin Water Quality Control Board' should be established immediately as a means of strengthening the current Han River basin water quality control policy. Seventh, in drawing up the Han River proiect, the administrative officials should be aware that Han River basin is a life line for those people in the region, providing them with not only a sheer physical space, but with a psychological living space for their everyday life.

  • PDF

Water Resources Management Challenge in the Citarum River Basin, Indonesia

  • Wicaksono, Albert;Yudianto, Doddi;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.198-198
    • /
    • 2016
  • The Citarum River Basin is the biggest river basin in West Java Province, Indonesia and it plays strategic roles in providing water for irrigation, domestic and industrial uses, and power generation, besides controlling the flood during rainy season. Flowing through seven major cities makes the river flow and water demand are vulnerable to land use change around the river. The present water resources management has involved the regulator, operator, and users in deciding an appropriate water management plan for the entire basin. The plan includes an operation plan for three reservoirs, construction or maintenance of the river channel, and water allocation for all users along the river. Following this plan, a smaller operation group will execute and evaluates the plan based on the actual flow condition. Recently, a deforestation, environment degradation, river sedimentation, a rapid growth of population and industry, also public health become new issues that should be considered in water basin planning. Facing these arising issues, a new development program named ICWRMIP was established to advance the existing management system. This program includes actions to strengthen institutional collaboration, do the restoration and conservation of the river environment, improve water quality and public health, also advance the water allocation system. At present, the water allocation plan is created annually based on a forecasted flow data and water usage prediction report. Sometimes this method causes a difficulty for the operator when the actual flow condition is not the same as the prediction. Improving existing system, a lot of water allocation studies, including a development of the database and water allocation simulation model have been placed to help stakeholders decide the suitable planning schemes. In the future, this study also tries to contribute in advancing water allocation planning by creating an optimization model which ease stakeholders discover a suitable water allocation plan for individual users.

  • PDF

The Physical Region of China Divided by the Characteristics of Drainage Patterns. (하계망패턴의 특색으로 구분한 중국의 자연지역)

  • Hwang, Sang-Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.151-164
    • /
    • 1996
  • The regional division by the characteristics of the drainage patterns is important to understand its physical environment comprehensively, because the drainage network develops in reflecting characteristics of geological, geographical and climatical features in the drainage basin keenly. This study is the attempt to divide physical region in China whose drainage pattern is diverse. Chinese drainage basin is mainly divided into the interior drainage basin and the peripheral drainage basin. The interior drainage basin is divided into (1)the deranged pattern and (2)the centripetal pattern. The peripheral drainage basin is divided into (1)the dendritic pattern, (2)the parallel pattern, (3)the radial pattern and (4)the anastomatic pattern. Drainage patterns of the interior drainage basin are formed by affecting geographical features and climatic conditions mainly. In the peripheral drainage basin, drainage patterns are formed by other factors: the parallel pattern is connected with geological structure lineament by tectonic movement, the radial pattern with changes of the river channel resulted from the Yellow River's overflow, the anastomotic pattern with human's activities. The distributional features of the physical region in China are as follows: The deranged pattern appears in Zangbai Plateau, the centripetal pattern does in arid basin of the northwest China. the parallel pattern does in Hengduan mountains affected strongly by tectonic movement between Yangtze paraplatform and Indian Plate, does in the upper stream of Yangtze River and Ganges River in the south of Qinghai-Xizang Plateau, the radial pattern in Huaihe Haihe River drainage basin appearing in the alluvial fan region of Yellow River's downstream and the anastomotic pattern does in the delta of Yangtze River, in the northern coastal plain of the Jiangsu-Province and in the delta of Zhujiang River. Except these areas in the peripheral drainage basin, the dendritic pattern is usually found in the other areas.

  • PDF

Study on Water Resources Allocation in the Lancangjiang River Basin of China

  • Ying, Gu;Heng, Liu;Jingnan, Liu;Sihua, Lei
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.36-44
    • /
    • 2006
  • Based on water resources availability and development condition of the Lancang River, as well as considering the international river water resources characters, the paper put forwarded an integrated allocation way of the water resources of Lancang River Basin. According to the basic rules of equitable and suitable utilization of water resources of international rivers, water resources demand for domestic, industrial, irrigation and ecosystem system, and principles of society stabilities and the food safety etc, an index system of Lancang River water resources allocation was set up. Two levels scheme of Lancang River water allocation are proposed. First level is for an international water, which primarily to analysis the water quantity at the national boundary. Second level is for provincial water allocation among Qinghai, Yunnan provinces and Tibetan Autonomous Region. In the allocation schemes, the water resources development of Lancang River Basin at different scenarios and the related water allocation in different years and seasons were analyzed. A discharge to some cross sections of the river and a total amount water quantity for each district has been given as well.

  • PDF

Rainfall-Runoff Analysis of River Basin Using Spatial Data (지형공간 특성자료를 이용한 하천유역의 강우-유출해석)

  • 안승섭;이증석;도준현
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.949-955
    • /
    • 2003
  • The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM) materials. This research aimed at suggesting the applicability of the CELLMOD Model, a distribution-type model, in interpreting runoff based on the topological properties of a river basin, by carrying out runoff interpretation far heavy rains using the model. To examine the applicability of the model, the calculated peaking characteristics in the hydrograph was analyzed in comparison with observed values and interpretation results by the Clark Model. According to the result of analysis using the CELLMOD Model proposed in the present research for interpreting the rainfall-runoff process, the model reduced the physical uncertainty in the rainfall-runoff process, and consequently, generated improved results in forecasting river runoff. Therefore it was concluded that the algorithm is appropriate for interpreting rainfall-runoff in river basins. However, to enhance accuracy in interpreting rainfall-runoff it is necessary to supplement heavy rain patterns in subject basins and to subdivide a basin into minor basins for analysis. In addition, it is necessary to apply the model to basins that have sufficient observation data, and to identify the correlation between model parameters and the basin characteristics(channel characteristics).

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Estimation of Depth-Length Ratios with the Han-River Basin's Simultaneous Rainfall Data (한강유역 동시강우량 자료를 이용한 강우량-거리비의 산정)

  • 이원환;이길춘
    • Water for future
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 1987
  • This Study is to estimate depth-length ratios by the frequency analysis of simultaneous rainfall data on fixed points in the Han -River basin. The depth-length ratios are based on examination of spatial and temporal correlation structures of the Han-River basin's rainfall. This Study reveals that the depth-length ratios are decreasing as the distance of the basin increases and that they are increasing as the duration of rainfall increases. This study also shows that the ratios tend to decrease as the return period increase. The results present general equations and characteristic equations of depth-length ratios, figures and characteristic parameter tables which explain the temporal and spatial structures of rainfall in the Han-River basin.

  • PDF

The Analysis of GIS DB for the Evaluation of Turbid Water Considering Spatial Characteristics of River Channel (하천의 공간적 특성을 고려한 탁수평가 GIS DB 분석)

  • Park Jin-Hyeog;Lee Geun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Andong and Imha reservoir adjoins each other, but turbid water shows too much different when it rains. The characteristics of geological rock in basin and agricultural area around river boundary are pointed out as the major reason of turbid water of Imha reservoir. This study analyzed rock type of topsoil layer using soil map by National Institute of Agricultural Science and Technology (NIAST). Among rock types, sedimentary rock affects on the occurrence of turbid water. In the analysis of sedimentary rock type, the distribution of sedimentary rock of Imha basin shows 1.87 times higher than that of Andong basin. Also, the distribution of sedimentary rock of Imha basin shows higher than that of Andong basin within 1,600m from river channel in according to the buffer zone of river boundary. And Agricultural area of Imha basin shows higher than that of Andong basin in analysis of land cover within 1,600 m from river channel. As this agricultural characteristics of Imha basin, cover management factor of Imha basin represents more higher that that of Andong basin.