• Title/Summary/Keyword: River

Search Result 12,316, Processing Time 0.032 seconds

Verification of Water Environment Network Representative at the Baekcheon Junction of the Nakdong River (낙동강 백천 합류부 지점의 물환경측정망 대표성 검증)

  • Ahn, Jung Min;Im, Teo Hyo;Kim, Sung Min;Kim, Shin;Kim, Gyeong Hoon;Kwon, Heon Gak;Shin, Dongseok;Yang, Deuk Seok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.371-381
    • /
    • 2018
  • Multifunctional weirs constructed through the Four Major Rivers Restoration Project are operated as management water levels. The purpose of this study was to evaluate the effect of water level in the main stem on the tributary water level according to multifunctional weir operation, because the operation of multifunctional weirs for water level management influences the drainage of tributaries. In this study, water level pressure gauges were installed and spatial and temporal water quality was observed. The LOcally Weighted Scatterplot Smoothing (LOWESS) technique was applied to the Nakdong River and the Baekcheon Junction, both upstream of the Gangjeong-Goryeong weir, in order to analyze water quality trends. When considering the overall analysis and observations, it was found that the water quality forecasting point located at the Baekcheon estuary point should be transferred to the Dosung Bridge, which is located upstream of the Sunwon Bridge.

The Value of Culture Contents on Historical Landscape of Apgujung Pavilion (압구정의 역사경관의 문화 콘텐츠적 가치)

  • Kim, Sun-Hwa;Lee, Jae-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.6
    • /
    • pp.428-441
    • /
    • 2014
  • The Han river flowing the southern boundary of Hangyang city wall was known for scenic remote villa spot. This research is about a study on the historical and cultural landscape value of Apgujung built on hills of the Han river by Han Myeong Hoe in the mid-15th century. The results are as follows. First, the Han river has been a cultural poetical place. Second, the pavilion of west river was built as thatched roof at 1454-1456, while that of east river was erected as grand villa at 1469-1473. Third, there are characteristics of periodical landscape and origin was included on historical and cultural landscape, therefore, Apgujuing-dong has been recognized with the story. Han river where Apgujung was built has beautiful water landscape in spite of the landscape of modem downtown. Fourth, there are placeness and Han river of main landscape text streams nearby Apgujung site. Historical and cultural landscape of Apgujung should be changed, but, the landscape value could be progressed with the application as cultural contents while the Han river flows. It could be cultivated on the application of various culture contents and story of Apgujung when the historical landscape of water system be restored in Han river.

The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea (영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도)

  • Kim, Jihye;Kim, Bomchul;Shin, Myoungsun;Kim, Jaiku;Jung, Sungmin;Lee, Yunkyoung;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

Development of GIS-based Method for Estimating and Representing Stream Slopes Along the River Network (GIS 기반 하천경사 산정 및 하천망에 따른 표출 방식 개발)

  • You, Ho-Jun;Kim, Dong-Su;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.725-738
    • /
    • 2012
  • Recently, a variety of GIS-based tools enabling to generate topographic parameters for hydrologic and hydraulic researches have been developed. However, most of GIS-based tools are usually insufficient to estimate and visualize river channel slopes especially along the river network, which can be possibly utilized for many hydraulic equations such as Manning's formula. Many existing GIS-based tools have simply averaged cell-based slopes for the other advanced level of hydrologic units as likely as the mean watershed slope, thus that the river channel slope from the simple approach resulted in the inaccurate channel slope particularly for the mountain region where the slope varies significantly along the downstream direction. The paper aims to provide several more advanced GIS-based methodologies to assess the river channel slopes along the given river network. The developed algorithms were integrated with a newly developed tool named RiverSlope, which adapted theoretical formulas of river hydraulics to calculate channel slopes. For the study area, Han stream in the Jeju island was selected, where the channel slopes have a tendency to rapidly change the upstream near the Halla mountain and sustain the mild slope adjacent to watershed outlet heading for the ocean. The paper compared the simple slope method from the Arc Hydro, with other more complicated methods. The results are discussed to decide better approaches based on the given conditions.

Impacts on Water Surface Level of the Geum River with the Diversion Tunnel Operation for Low Flow Augmentation of the Boryong Dam (금강-보령댐 도수터널 운영에 따른 금강 본류 내 수위 영향 분석 연구)

  • Jang, Suk-Hwan;Oh, Kyoung-Doo;Oh, Ji-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1031-1043
    • /
    • 2017
  • Recently severe drought caused the water shortage around the western parts of Chungcheongnamdo province, South Korea. A Diversion tunnel from the Geum river to the Boryong dam, which is the water supply dam for these areas has been proposed to solve this problem. This study examined hydraulic impacts on the Geum river associated with the diversion plan assuming the severe drought condition of 2015 would persist for the simulation period of 2016. The hydraulic simulation model was verified using hydrologic and hydraulic data including hourly discharges of the Geum river and its 8 tributaries, fluctuation of tidal level at the mouth of the river, withdrawals and return flows and operation records of the Geum river barrage since Feb. 1, 2015 through May 31, 2015. For the upstream boundary condition of the Geum river predicted inflow series using the nonlinear regression equation for 2015 discharge data was used. In order to estimate the effects of uncertainty in inflow prediction to the results total four inflow series consisting of upper limit flow, expected flow, lower limit flow and instream flow were used to examine hydraulic impacts of the diversion plan. The simulation showed that in cases of upper limit and expected flows there would be no problem in taking water from the Geum river mouth with a minimum water surface level of EL(+) 1.44 m. Meanwhile, the simulation also showed that in cases of lower limit flow and instream flow there would be some problems not only in taking water for water supply from the mouth of the Geum river but also operating the diversion facility itself with minimum water surface levels of EL(+) 0.94, 0.72, 0.43, and 0.14 m for the lower limit flow without/with diversion and the instream flow without/with diversion, respectively.

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

Han River Management Policy (한강수질의 관리방안)

  • 심영섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1992
  • Among the rivers in Korea, the Han River is the largest, most important one, which runs through the Seoul metropolitan region in the west toward the yellow sea. In the Han River basin there live as many as 17.1 mil. people including appr, 11 mil, citizens in Seoul. The Seoul Metropolitan region, already containing appr. 40% of the nation's total populating, expectedly poses an ever-growing polluting burden to the Han River. Due to Korea's vigorous industrialization and heavy urbanization in the past quarter century, water pollution was observed to be increasing in the Han River until the mid-1980's, but thereafter the Han River began to improve little by little by virtue of the government's massive investment and all-out efforts in water preservation. Public awareness on the importance of environmental protection is increasing unprecedentedly. With a view to meeting people's growing demand for clean water and pleasant environment, the government established the "Comprehensive Mid-Term Environmental Conservation Plan" (1992∼1993) in 1991. According to the plan, 1,315 bil.won(1.7 bil.us$ ) is to be poured into the Han River Basin to install 113 water pollutant abatement plants including 43 treatment facilities. To successfully cope with the future's challenging need for the environmentally sound sustainable development, a variety of measures and an array of policies are going to be incorporated with emphasis on, -redistributing such polluting sources as population and industries -tightening control of the water pollutant discharge -restricting the pollution-accompanying land use -enhancing the assimilation capacity of the river -stirring up the public awareness and participation in the environment protection We hopefully anticipate that with those e(forts the Han River will improve as drawn in the attached "1996's Envisioned Han River Quality".

  • PDF

Estimation of Superelevation in Mountainous River Bends (산지하천 만곡부의 편수위 산정)

  • Park, Sang Doeg;Lee, Seung Kyu;Shin, Seung Sook;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1165-1176
    • /
    • 2014
  • In a river bend the water surface is inclined by the centrifugal force toward the transverse section. If channel slope and flow rate increase, the gradient is rising generally. There are lots of the flood damage at the bends of mountain river because the flood water levels have exceeded frequently the levee levels which are added a free board to the design flood water level. Therefore the superelevation should be considered in designing the mountainous river bend. In present study it was proposed to estimate the superelevation at the bend of mountain river and the superelevation coefficient defined from multiplying the sub-factors. The values of the influence factors for the superelevation coefficient were suggested from analyzing the superelevation measured at the bends in Yangyangnamdae river and the hydraulic experiments in gravel-bed channel with a $90^{\circ}$ bend. The applicability of these methods to estimate the superelevation at the bends in mountain river was verified by the superelevation measured at the bend in Naerin river.

Optimal Decision of River Width Work Using Analytic Hierarchy Process-Case Study of IP-Chon (AHP기법을 이용한 최적 계획하폭 선정-입천에의 적용 사례연구)

  • Lee, Jae-Mun;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.931-941
    • /
    • 2007
  • Traditionally, the decision of river width has aimed majorly at flood control and good river conveyance. And the river width has been decided by practitioner#s subjective and empirical opinion. Recently, however, there is a need for more objective and thus quantitative decision method for decision of river width considering not only economical aspect but also social or environmental aspect. This study adopts the analytic hierarchy process (AHP) to improve the objectiveness in the decision of river width. Criteria and a standardized process are presented for field application. Using the proposed method, one can prioritize various river width and make the optimal decision. We believe that the method can serve as a useful tool for river engineers in practice.

Contamination Sources of Several Potentially Hazardous Compounds Found at the Gap Stream and the Miho Stream, Two Major Tributaries of the Geum River (금강 수계 주요지류인 갑천과 미호천에서 잠정유해물질 오염원 확인 연구)

  • Lee, Jun-Bae;Lee, Jay-Jung;Cho, Yoon-Hae;Yoon, Jo-Hee;Hong, Seoun-Hwa;Lee, Dae-Hee;Lee, Dae-Hee;Cho, Young-Hwan;Shin, Ho-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • BACKGROUND: Water quality is of concern to water utility operators, public health officials, and populations using the water. If any contaminant is released from a point of entry, it could be spread rapidly throughout the water stream. So the identification of the location of the points of entry and its release history are critical informations to establish the management strategy.METHODS AND RESULTS: Aniline, nonylphenol, pentachlorophenol and formaldehyde in 39 surface water samples were analysed using Gas chromatography-mass spectrometry (GC-MS) methods. Formaldehyde, aniline and nonylphenol were mainly detected in the near sites where industrial waste water and domestic sewage were discharged into stream. But pentachlorophenol was detected in the downstream samples where pulp manufacturing plants were operated.CONCLUSION: Results indicate that pentachlorophenol found in main stream of Guem river was mainly introduced from pulp manufacture industries. Otherwise, formaldehyde, aniline and nonylphenol were mainly contaminated from the industrial waste water and domestic sewage.