• Title/Summary/Keyword: Risk scenario

Search Result 465, Processing Time 0.025 seconds

A Classification Study on the Consumer Product Safety Management Target for CSR Consumer Issues (CSR 소비자이슈를 위한 생활용품 안전관리대상 유형 분류형태 연구)

  • Suh, Jungdae
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.119-131
    • /
    • 2019
  • Among the themes for CSR(Corporate Social Responsibility), consumer issues include protecting the health and safety of consumers who purchase and use the products. In particular, ensuring product safety is a major theme of consumer issues for corporate social responsibility. Currently, the government implements the Electrical Appliances and Consumer Products Safety Control Act for product safety management and selects products that may harmful to consumers as safety control items, and manages the products by designating them as 4 types of safety certification, safety confirmation, supplier conformity verification, and safety standard compliance. In this paper, we propose management plans for the establishment of a more reasonable classification type of safety management target for 48 items of consumer products to be controlled by the act, and confirm the validity of the plan. First, we perform cluster analysis using data for CISS (Consumer Injury Surveillance System) to derive a new classification type of the safety management target. Next, we compare the results of the cluster analysis with the classification type of the act and the existing scenario classification method RAS (Risk Assessment by Scenario) and the causal network method RAMP (Risk Assessment Method based on Probability). Based on these results, we propose two new plans of safety management target classification and verify its validity.

Integrated Flood Risk Management through Modelling of Nature Based Solutions

  • Bastola, Shiksha;Kareem, Kola Yusuff;Park, Kiddo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.160-160
    • /
    • 2022
  • Floods are the most common natural disasters and are annually causing severe destructions worldwide. Human activities, along with expected increased extreme precipitation patterns as a result of climate change enhance the future potential of floods. There are proven evidence that infrastructure based responses to flood disaster is no longer achieving optimum mitigation and have created a false sense of security. Nature-based solutions(NBS) is a widely accepted sustainable and efficient approach for disaster risk reduction and involves the protection, restoration, or management of natural and semi-natural ecosystems to tackle the climate and natural crisis. Adoption of NBS in decision-making, especially in developing nations is limited due to a lack of sufficient scenario-based studies, research, and technical knowledge. This study explores the knowledge gap and challenges on NBS adoption with case study of developing nation, specially for flood management, by the study of multiple scenario analysis in the context of climate, land-use change, and policies. Identification and quantification of the strength of natural ecosystems for flood resilience and water management can help to prioritize NBS in policymaking leading to sustainable measures for integrated flood management.

  • PDF

Auto-segmentation of head and neck organs at risk in radiotherapy and its dependence on anatomic similarity

  • Ayyalusamy, Anantharaman;Vellaiyan, Subramani;Subramanian, Shanmuga;Ilamurugu, Arivarasan;Satpathy, Shyama;Nauman, Mohammed;Katta, Gowtham;Madineni, Aneesha
    • Radiation Oncology Journal
    • /
    • v.37 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • Purpose: The aim is to study the dependence of deformable based auto-segmentation of head and neck organs-at-risks (OAR) on anatomy matching for a single atlas based system and generate an acceptable set of contours. Methods: A sample of ten patients in neutral neck position and three atlas sets consisting of ten patients each in different head and neck positions were utilized to generate three scenarios representing poor, average and perfect anatomy matching respectively and auto-segmentation was carried out for each scenario. Brainstem, larynx, mandible, cervical oesophagus, oral cavity, pharyngeal muscles, parotids, spinal cord, and trachea were the structures selected for the study. Automatic and oncologist reference contours were compared using the dice similarity index (DSI), Hausdroff distance and variation in the centre of mass (COM). Results: The mean DSI scores for brainstem was good irrespective of the anatomy matching scenarios. The scores for mandible, oral cavity, larynx, parotids, spinal cord, and trachea were unacceptable with poor matching but improved with enhanced bony matching whereas cervical oesophagus and pharyngeal muscles had less than acceptable scores for even perfect matching scenario. HD value and variation in COM decreased with better matching for all the structures. Conclusion: Improved anatomy matching resulted in better segmentation. At least a similar setup can help generate an acceptable set of automatic contours in systems employing single atlas method. Automatic contours from average matching scenario were acceptable for most structures. Importance should be given to head and neck position during atlas generation for a single atlas based system.

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario (SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석)

  • Kim, Jihye;Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Model Algorithms for Estimates of Inhalation Exposure and Comparison between Exposure Estimates from Each Model (흡입 노출 모델 알고리즘의 구성과 시나리오 노출량 비교)

  • Park, Jihoon;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Objectives: This study aimed to review model algorithms and input parameters applied to some exposure models and to compare the simulated estimates using an exposure scenario from each model. Methods: A total of five exposure models which can estimate inhalation exposure were selected; the Korea Ministry of Environment(KMOE) exposure model, European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment(ECETOC TRA), SprayExpo, and ConsExpo model. Algorithms and input parameters for exposure estimation were reviewed and the exposure scenario was used for comparing the modeled estimates. Results: Algorithms in each model commonly consist of the function combining physicochemical properties, use characteristics, user exposure factors, and environmental factors. The outputs including air concentration ($mg/m^3$) and inhaled dose(mg/kg/day) are estimated applying input parameters with the common factors to the algorithm. In particular, the input parameters needed to estimate are complicated among the models and models need more individual input parameters in addition to common factors. In case of CEM, it can be obtained more detailed exposure estimates separating user's breathing zone(near-field) and those at influencing zone(far-field) by two-box model. The modeled exposure estimates using the exposure scenario were similar between the models; they were ranged from 0.82 to $1.38mg/m^3$ for concentration and from 0.015 to 0.180 mg/kg/day for inhaled dose, respectively. Conclusions: Modeling technique can be used for a useful tool in the process of exposure assessment if the exposure data are scarce, but it is necessary to consider proper input parameters and exposure scenario which can affect the real exposure conditions.

Radiological Risk Assessment for the Public Under the Loss of Medium and Large Sources Using Bayesian Methodology (베이지안 기법에 의거한 중대형 방사선원의 분실 시 일반인에 대한 방사선 위험도의 평가)

  • Kim, Joo-Yeon;Jang, Han-Ki;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5 % Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative lot risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety.

A Study on Implementation of Risk Based Inspection Procedures to a Petrochemical Plant (RBI 절차의 석유화학 플랜트 적용에 관한 연구)

  • Song, Jung-Soo;Shim, Sang-Hoon;Kim, Ji-Yoon;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBl for RBI based on the API 581 code was developed. This software has modules for evaluating qualitative and semi-quantitative risk level, analyzing quantitative risks using the potential consequences of a failure of the pressure boundary, and assessing the likelihood of failure. A quantitative analysis was performed for 16 columns in a domestic NCC (Naphtha Cracking Center) plant whose operating time reaches about 12 years. Each column was considered as two equipment parts by dividing into top and bottom. Generic column failure frequencies were adjusted based on likelihood data. After determining release rate, release duration and release mass for each failure scenario, flammable/explosive and toxic consequences were assessed. Current risks for 32 equipment parts were evaluated and risk based prioritization were determined as a final result.

Analysis on the Risk of Explosive Terror in Domestic Buildings (국내 건물의 폭발물 테러 위험도 요인 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • According to the global status of terroristic acts occurred from 2002 to 2010, 10,431(nearly 52.2%) of 19,946 cases have happened by bomb blasts, and 10,431(nearly 52.2%) of weapons used for terrorism were explosive substances Therefore, this study analyzed the terrorism risks of buildings according to height through FEMA 455 - rapid visual screening. As a result, the higher the building is, the higher the terror risk gets. It shows that total risk increases proportionally to buildings's height. In case of buildings over 100 meter high, the total risk is most affected by threat items. According to the risk of explosion associated with the scenario analysis, buildings over 100 meter high have high risks of Internal-Explosive.