• Title/Summary/Keyword: Risk map

Search Result 435, Processing Time 0.025 seconds

Assessing Red List categories to a Korean endangered species based on IUCN criteria - Hanabusaya asiatica (Nakai) Nakai- (멸종위기식물의 IUCN 적색목록 보전지위 평가 -금강초롱꽃에 대하여-)

  • Park, Soo-Kyung;Kim, Hui;Chang, Chin-Sung
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.2
    • /
    • pp.128-138
    • /
    • 2013
  • The conservation status of an endemic perennial herb, Hanabusaya asiatica (Nakai) Nakai (Campanulaceae) was determined by applying the IUCN risk assessment criteria from our field study and available specimen data. Also, the GIS technology was used to develop a species distribution map to calculate the extent of occurrence (EOO) and area of occupancy (AOO) for the taxon. After two years of continuous field studies, 269 mature individuals were found in four localities in 2011, while 216 mature individuals were confirmed in three localities in 2012. Based on the following data, such as EOO (2,742 $km^2$), AOO (76 $km^2$) and estimated population size of mature individuals, the taxon, which is known as 20 localities in Korean peninsula, is evaluated as the category of Endangered (EN). A major difficulty in application of IUCN criteria to Korean rare plants were the lack of essential biological information and understanding the correct knowledge of the IUCN criteria in previous Korean studies. Sound conclusions regarding the conservation status of individual species require more intensive population studies, observations, and applying IUCN assessment procedures correctly.

A Study on Adequacy of Pipe Deterioration Evaluation Methods using the Endoscope of Water Distribution Pipe (배수관 내시경 조사를 통한 간접적인 관 노후도 평가방법의 적정성 연구)

  • Choi, Tae Ho;Kang, Sin Jae;Choi, Jae Ho;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.669-683
    • /
    • 2012
  • The water supply pipes are buried across wide range of areas, so it is hard to spot them using excavation and takes a large amount of expense. Thus, there is a high risk for direct research and application, accompanying many difficulties in implementation of them. Therefore, it is more economical and convenient to use indirect evaluation variables than direct evaluation of the buried pipes in assessing the degree of pipe deterioration. To assess the degree of pipe deterioration using the indirect evaluation variables, it should be done first to identify how and to what extent they affect the degree of deterioration. This study measured the evaluation variables for pipe deterioration using the pipe endoscope and analyzed the measurement results and the degree of impact on the pipes. In addition, this study attempted to evaluate the adequateness of the pipe deterioration evaluation using the indirect variables based on the analysis results. The evaluation variables measured through the pipe endoscope were the thickness of sediments, size of scale, degree of desquamation and condition of connections. For the indirect evaluation variables, the data such as the property data from GIS pipe network map as well as the material, diameter, age and pipe lining material of the pipe, road type, leakage frequency, average water velocity and water pressure using the leakage repair records was collected. Using the collected data, this study comparatively analyzed the indirect evaluation variables for the degree of pipe deterioration and the results from the pipe endoscope to choose appropriate variables for pipe deterioration evaluation and calculated the weights of the indirect variables on the degree of deterioration. The results showed that the order of the impact of indirect variables on deterioration was pipe age > pipe lining material > road type > leakage frequency > average water velocity with their weights of 0.45, 0.20, 0.15, 0.10, and 0.10, respectively. Conclusively, the results suggest that the measures of sediment thickness, scale size, degree of desquamation and condition of connections are appropriate for the evaluation of pipe deterioration and sufficient for the analysis of the impact of the indirect variables on deterioration.

Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set - (농업용 저수지 붕괴에 따른 2차원 홍수범람해석 -계측자료가 부족한 실제사례를 중심으로-)

  • Lee, Jae Young;Kim, Byunghyun;Park, Jun Hyung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.231-243
    • /
    • 2016
  • This study presents the applicability of two-dimensional (2D) flood inundation model by applying to real irrigation reservoir failure with limited available data. The study area is Sandae Reservoir placed in Gyeongju and downstream area of it and the reservoir was failured by piping in 2013. The breach hydrograph was estimated from one-dimensional (1D) hydrodynamic model and the discharge was employed for upstream boundary of 2D flood inundation model. Topography of study area was generated by integrating digital contour map and satellite data, and Cartesian grids with 3m resolution to consider geometry of building, road and public stadium were used for 2D flood inundation analysis. The model validation was carried out by comparing predictions with field survey data including reservoir breach outflow, flood extent, flood height and arrival time, and identifying rational ranges with allowed error. In addition, the applicability of 2D model is examined using different simulation conditions involving grid size, building and roughness coefficient. This study is expected to contributed to analysis of irrigation reservoirs were at risk of a failure and setting up Emergency Action Plan (EAP) against irrigation reservoir failure.

High-Precision and 3D GIS Matching and Projection Based User-Friendly Radar Display Technique (3차원 GIS 정합 및 투영에 기반한 사용자 친화적 레이더 자료 표출 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lee, Dong-Ryul;Lim, Sanghun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1145-1154
    • /
    • 2014
  • In recent years, as frequency and intensity of severe weather disasters such as flash flood have been increasing, providing accurate and prompt information to the public is very important and needs of user-friendly monitoring/warning system are growing. This paper introduces a method that re-produces radar observations as multimedia contents and applies reproduced data to mesh-up services. In addition, a accurate GIS matching technique to help to track the exact location going on serious atmospheric phenomena is presented. The proposed method create multimedia contents having structures such as two dimensional images, vector graphics or three dimensional volume data by re-producing various radar variables obtained from a weather radar. After then, the multimedia formatted weather radar data are matched with various detailed raster or vector GIS map platform. Results of simulation test with various scenarios indicate that the display system based on the proposed method can support for users to figure out easily and intuitively routes and degrees of risk of severe weather. We expect that this technique can also help for emergency manager to interpret radar observations properly and to forecast meteorological disasters more effectively.

Hotspot Analysis of Urban Crime Using Space-Time Scan Statistics (시공간검정통계량을 이용한 도시범죄의 핫스팟분석)

  • Jeong, Kyeong-Seok;Moon, Tae-Heon;Jeong, Jae-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.14-28
    • /
    • 2010
  • The aim of this study is to investigate crime hotspot areas using the spatio-temporal cluster analysis which is possible to search simultaneously time range as well as space range as an alternative method of existing hotspot analysis only identifying crime occurrence distribution patterns in urban area. As for research method, first, crime data were collected from criminal registers provided by official police authority in M city, Gyeongnam and crime occurrence patterns were drafted on a map by using Geographic Information Systems(GIS). Second, by utilizing Ripley K-function and Space-Time Scan Statistics analysis, the spatio-temporal distribution of crime was examined. The results showed that the risk of crime was significantly clustered at relatively few places and the spatio-temporal clustered areas of crime were different from those predicted by existing spatial hotspot analysis such as kernel density analysis and k-means clustering analysis. Finally, it is expected that the results of this study can be not only utilized as a valuable reference data for establishing urban planning and crime prevention through environmental design(CPTED), but also made available for the allocation of police resources and the improvement of public security services.

Functional Requirements to Develop the Marine Navigation Supporting System for Northern Sea Route (북극해 안전운항 지원시스템 구축을 위한 기능적 요구조건 도출)

  • Hong, Sung Chul;Kim, Sun Hwa;Yang, Chan Su
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • International attention on the Northern Sea Route has been increased as the decreased sea-ice extents in Northern Sea raise the possibility to develop new sea routes and natural resources. However, to protect ships' safety and pristine environments in polar waters, International Maritime Organization(IMO) has been developing the Polar Code to regulate polar shipping. The marine navigation supporting system is essential for ships traveling long distance in the Northern Sea as they are affected by ocean weather and sea-ice. Therefore, to cope with the IMO Polar Code, this research proposes the functional requirements to develop the marine navigation supporting system for the Northern Sea Route. The functional requirements derived from the IMO Polar code consist of arctic voyage risk map, arctic voyage planning and MSI(Marine Safety Information) methods, based on which the navigation supporting system is able to provide dynamic and safe-economical sea route service using the sea-ice observation and prediction technologies. Also, a requirement of the system application is derived to apply the marine navigation supporting system for authorizing ships operating in the Northern Sea. To reflect the proposed system in the Polar Code, continual international exchange and policy proposals are necessary along with the development of sea-ice observation and prediction technologies.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

An Automated Flood Risk Mapping Algorithm using GIS-based Techniques considering Characteristics of Jeju streams (제주하천 특성 고려 GIS 기반 홍수범람위험도 자동화 알로리즘)

  • Kim, Dongsu;Kim, Taeeun;Son, Geunsoo;You, Hojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.634-634
    • /
    • 2015
  • 최근 국지성 호우와 잦은 태풍으로 인한 돌발홍수가 빈번하게 발생하여 도심지에서의 호안유실과 범람으로 많은 외수침수의 피해가 발생하고 있다. 또한 기후변화에 따른 강우량의 증가와 집중호우로 인한 홍수 피해는 지속적으로 증가할 것으로 예상됨에 따라 대하천 유역을 중심으로 홍수범람예측 연구가 활발히 진행되고 있지만 대하천을 제외한 지방 중소하천의 연구가 미비한 실정이다. 이에 본 연구에서는 지방 중소하천 중 태풍과 집중호우의 영향이 많은 제주지역의 주요 하천 중의 하나인 한천 유역을 테스트베드로 선정하여 연구를 진행하였다. 한천은 강우 시에만 유출이 발생하는 건천으로, 집중호우 시 암반하상 조건, 복개, 교각 등으로 수위가 국부적으로 급격히 상승하는 경우가 있었다. 그리고 한천 하류부에는 도심이 위치하고 있어 돌발홍수 발생 시 막대한 피해가 발생한다. 이에 따라 홍수 피해를 줄이기 위한 제도화, 정책결정 등의 구조적 해결방안과 홍수 피해의 규모와 원인을 분석하는 비구조적 해결방안에 대한 연구가 시급하다. 따라서 본 연구에서는 홍수범람 등으로 인한 홍수 피해규모를 산정하여 각 정부부처 및 유관기관, 지자체에서 빠른 정책결정을 내릴 수 있는 자료를 제공하는 목적으로 제주도의 특성을 고려한 홍수범람위험도 산정 알고리즘을 개발하고자 한다. 본 연구에서는 제주 한천유역의 단면 자료와 빈도별 홍수량 자료를 이용하여 HEC-RAS 모형으로 수리학적 흐름특성 모의를 실사하였다. 모의된 결과를 바탕으로 ArcGIS 소프트웨어인 ESRI사의 ArcMap을 이용하여 빈도별 홍수위 자료와 제주지역 수치표고모형 자료를 활용한 빈도별 홍수범람지도를 산정하고, 좌안과 우안의 제방고로부터 위험도를 산정하여 홍수범람위험도를 각각 구축하였다. 구축된 결과를 이용하여 분석하고자하는 해당 빈도의 홍수위와 홍수량이 발생할 때의 피해지역을 예측하였으며, 예측된 지역과 제주시의 공시지가 자료를 중첩하여 피해지역에 대한 피해액을 산정하였다. 본 연구의 알고리즘을 적용한 2007년 태풍 '나리' 사상의 경우와 비교한 결과, '나리' 사상의 침수 흔적도와 유사한 홍수범람지도를 획득 할 수 있었으며, 모의된 유역의 하천 복개구간을 중심으로 홍수범람이 발생한다는 점과 우안보다 좌안에서의 홍수범람위험도와 피해액이 더 크게 나타난 점 등의 홍수범람 특성을 파악할 수 있었다. 본 연구에서 제시된 기법을 이용할 경우, 홍수에 의한 취약지에 대한 제방 설계 강화, 하천의 보수 정비 등 정책적 결정에 사용될 수 있을 것이며, 실시간 자료제공, 재해정보시스템 등에 적용하여 홍수범람 피해를 줄일 수 있는 기반기술이 될 것으로 사료된다.

  • PDF

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.