• Title/Summary/Keyword: Risk Probability

Search Result 1,139, Processing Time 0.027 seconds

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

The Predictable Factors of the Postoperative Kyphotic Change of Sagittal Alignment of the Cervical Spine after the Laminoplasty

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Kim, Dong Ha;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • Objective : Laminoplasty is an effective surgical method for treating cervical degenerative disease. However, postoperative complications such as kyphosis, restriction of neck motion, and instability are often reported. Despite sufficient preoperative lordosis, this procedure often aggravates the lordotic curve of the cervical spine and straightens cervical alignment. Hence, it is important to examine preoperative risk factors associated with postoperative kyphotic alignment changes. Our study aimed to investigate preoperative radiologic parameters associated with kyphotic deformity post laminoplasty. Methods : We retrospectively reviewed the medical records of 49 patients who underwent open door laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament (OPLL) at Pusan National University Yangsan Hospital between January 2011 and December 2015. Inclusion criteria were as follows : 1) preoperative diagnosis of OPLL or CSM, 2) no previous history of cervical spinal surgery, cervical trauma, tumor, or infection, 3) minimum of one-year follow-up post laminoplasty with proper radiologic examinations performed in outpatient clinics, and 4) cases showing C7 and T1 vertebral body in the preoperative cervical sagittal plane. The radiologic parameters examined included C2-C7 Cobb angles, T1 slope, C2-C7 sagittal vertical axis (SVA), range of motion (ROM) from C2-C7, segmental instability, and T2 signal change observed on magnetic resonance imaging (MRI). Clinical factors examined included preoperative modified Japanese Orthopedic Association scores, disease classification, duration of symptoms, and the range of operation levels. Results : Mean preoperative sagittal alignment was $13.01^{\circ}$ lordotic; $6.94^{\circ}$ lordotic postoperatively. Percentage of postoperative kyphosis was 80%. Patients were subdivided into two groups according to postoperative Cobb angle change; a control group (n=22) and kyphotic group (n=27). The kyphotic group consisted of patients with more than $5^{\circ}$ kyphotic angle change postoperatively. There were no differences in age, sex, C2-C7 Cobb angle, T1 slope, C2-C7 SVA, ROM from C2-C7, segmental instability, or T2 signal change. Multiple regression analysis revealed T1 slope had a strong relationship with postoperative cervical kyphosis. Likewise, correlation analysis revealed there was a statistical significance between T1 slope and postoperative Cobb angle change (p=0.035), and that there was a statistically significant relationship between T1 slope and C2-C7 SVA (p=0.001). Patients with higher preoperative T1 slope demonstrated loss of lordotic curvature postoperatively. Conclusion : Laminoplasty has a high probability of aggravating sagittal balance of the cervical spine. T1 slope is a good predictor of postoperative kyphotic changes of the cervical spine. Similarly, T1 slope is strongly correlated with C2-C7 SVA.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.

Comparison of Dosimetrical and Radiobiological Parameters on Three VMAT Techniques for Left-Sided Breast Cancer

  • Kang, Seong-Hee;Chung, Jin-Beom;Kim, Kyung-Hyeon;Kang, Sang-Won;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Purpose: To compare the dosimetrical and radiobiological parameters among various volumetric modulated arc therapy (VMAT) techniques using restricted and continuous arc beams for left-sided breast cancer. Materials and Methods: Ten patients with left-sided breast cancer without regional nodes were retrospectively selected and prescribed the dose of 42.6 Gy in 16 fractions on the planning target volume (PTV). For each patient, three plans were generated using the $Eclipse^{TM}$ system (Varian Medical System, Palo Alto, CA) with one partial arc 1pVMAT, two partial arcs 2pVMAT, and two tangential arcs 2tVMAT. All plans were calculated through anisotropic analytic algorithm and photon optimizer with 6 MV photon beam of $VitalBEAM^{TM}$. The same dose objectives for each plan were used to achieve a fair comparison during optimization. Results: For PTV, dosimetrical parameters such as Homogeneity index, conformity index, and conformal number were superior in 2pVMAT than those in both techniques. $V_{95%}$, which indicates PTV coverage, was 91.86%, 96.60%, and 96.65% for 1pVMAT, 2pVMAT, and 2tVMAT, respectively. In most organs at risk (OARs), 2pVMAT significantly reduced the delivered doses compared with the other techniques, excluding the doses to contralateral lung. For the analysis of radiobiological parameters, a significant difference in normal tissue complication probability was observed in ipsilateral lung while no difference was observed in the other OARs. Conclusions: Our study showed that 2pVMAT had better plan quality and normal tissue sparing than 1pVMAT and 2tVMAT but not for all parameters. Therefore, 2pVMAT could be considered the priority choice for the treatment planning for left breast cancer.

A Prognostic Factor for Prolonged Mechanical Ventilator-Dependent Respiratory Failure after Cervical Spinal Cord Injury : Maximal Canal Compromise on Magnetic Resonance Imaging

  • Lee, Subum;Roh, Sung Woo;Jeon, Sang Ryong;Park, Jin Hoon;Kim, Kyoung-Tae;Lee, Young-Seok;Cho, Dae-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.791-798
    • /
    • 2021
  • Objective : The period of mechanical ventilator (MV)-dependent respiratory failure after cervical spinal cord injury (CSCI) varies from patient to patient. This study aimed to identify predictors of MV at hospital discharge (MVDC) due to prolonged respiratory failure among patients with MV after CSCI. Methods : Two hundred forty-three patients with CSCI were admitted to our institution between May 2006 and April 2018. Their medical records and radiographic data were retrospectively reviewed. Level and completeness of injury were defined according to the American Spinal Injury Association (ASIA) standards. Respiratory failure was defined as the requirement for definitive airway and assistance of MV. We also evaluated magnetic resonance imaging characteristics of the cervical spine. These characteristics included : maximum canal compromise (MCC); intramedullary hematoma or cord transection; and integrity of the disco-ligamentous complex for assessment of the Subaxial Cervical Spine Injury Classification (SLIC) scoring. The inclusion criteria were patients with CSCI who underwent decompression surgery within 48 hours after trauma with respiratory failure during hospital stay. Patients with Glasgow coma scale 12 or lower, major fatal trauma of vital organs, or stroke caused by vertebral artery injury were excluded from the study. Results : Out of 243 patients with CSCI, 30 required MV during their hospital stay, and 27 met the inclusion criteria. Among them, 48.1% (13/27) of patients had MVDC with greater than 30 days MV or death caused by aspiration pneumonia. In total, 51.9% (14/27) of patients could be weaned from MV during 30 days or less of hospital stay (MV days : MVDC 38.23±20.79 vs. MV weaning, 13.57±8.40; p<0.001). Vital signs at hospital arrival, smoking, the American Society of Anesthesiologists classification, Associated injury with Injury Severity Score, SLIC score, and length of cord edema did not differ between the MVDC and MV weaning groups. The ASIA impairment scale, level of injury within C3 to C6, and MCC significantly affected MVDC. The MCC significantly correlated with MVDC, and the optimal cutoff value was 51.40%, with 76.9% sensitivity and 78.6% specificity. In multivariate logistic regression analysis, MCC >51.4% was a significant risk factor for MVDC (odds ratio, 7.574; p=0.039). Conclusion : As a method of predicting which patients would be able to undergo weaning from MV early, the MCC is a valid factor. If the MCC exceeds 51.4%, prognosis of respiratory function becomes poor and the probability of MVDC is increased.

Application of Integrated Modelling Framework Consisted of Delft3D and HABITAT for Habitat Suitability Assessment (생물서식지 적합성 평가를 위한 Delft3D와 HABITAT 모델의 연계 적용)

  • Lim, Hyejung;Na, Eun Hye;Jeon, Hyeong Cheol;Song, Hojin;Yoo, Hojun;Hwang, Soon Hong;Ryu, Hui-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.217-228
    • /
    • 2021
  • This paper discusses a methodology where an integrated modelling framework is used to quantify the risk derived from anthropic activities on habitats and species. To achieve this purpose, a tool comprising the Delft3D and HABITAT model, was applied in the Yeongsan river. Delft3D effectively simulated the operational condition and flow of weirs in river. In accuracy evaluation of the Delft3D-FLOW, the Bias, Pbias, Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Index of Agreement (IOA) were used, and the result was evaluated as grade above 'Satisfactory'. The HABITAT calculated Habitat Suitability Value (HSV) for the following eight species: mammal, fish, aquatic plant, and benthic macroinvertebrate. An Area was defined as a suitable habitat if the HSV was larger than 0.5. HABITAT was judged accurately by measuring the Correct Classification rate (CCR) and the area under the ROC curve (AUC). For benthic macroinvertebrate, the CCR and AUC were 77% and 0.834, respectively, at thresholds of 0.017 and 4 inds/m2 for HSV and individuals per unit area. This meant that the HABITAT model accurately predicted the appearance of the benthic macroinvertebrates by approximately 77% and that the probability of false alarms was also very low. As a result of evaluating the suitability of habitats, in the Yeongsan river, if the annual "lowest level" (Seungchon weir: 2.5 EL.m/ Juksan weir: -1.35 EL.m) was maintained, the average habitat improvement effect of 6.5%P compared to the 'reference' scenario was predicted. Consequently, it was demonstrated that the integrated modelling framework for habitat suitability assessment is able to support the remedy aquatic ecological management.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

New record and prediction of the potential distribution of the invasive alien species Brassica tournefortii (Brassicaceae) in Korea (국내 침입외래식물 사막갓(Brassica tournefortii; Brassicaceae)의 보고 및 잠재 분포 예측)

  • KANG, Eun Su;KIM, Han Gyeol;NAM, Myoung Ja;CHOI, Mi Jung;SON, Dong Chan
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.184-195
    • /
    • 2022
  • The invasive alien species Brassica tournefortii Gouan (Brassicaceae) is herein reported for the first time in Korea, from Gunsan-si, Gochang-gun, and Jeju-si. Brassica tournefortii can easily be distinguished from B. juncea and B. napus by its dense stiff hairs at the base of the stem and leaves, basally and distally branched stems, partially dehiscent fruits, and seeds that become mucilaginous in the presence of moisture. Although some taxonomists have classified this species as belonging to Coincya Rouy based on its fruit and seed characteristics, the existence of one vein on the fruit valves and our maximum likelihood analysis using internal transcribed spacer sequences placed it in Brassica. Distribution data, photographs, and a description of B. tournefortii are presented herein. Moreover, potential changes in the distribution of B. tournefortii were predicted under different climate scenarios, but our analysis showed that the probability of the spreading of this species is low. Nevertheless, continuous monitoring is necessary for an accurate assessment. The results of the present study can be used to conduct an invasion risk assessment and can assist with the effective management of this invasive alien species.