• Title/Summary/Keyword: Risk Estimation

Search Result 959, Processing Time 0.027 seconds

Climate Change-Induced Physical Risks' Impact on Korean Commercial Banks and Property Insurance Companies in the Long Run (기후변화의 위험이 시중은행과 손해보험에 장기적으로 미치는 영향)

  • Seiwan Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.107-121
    • /
    • 2024
  • In this study, we empirically analyzed the impact of physical risks due to climate change on the soundness and operational performance of the financial industry by combining economics and climatology. Particularly, unlike previous studies, we employed the Seasonal-Trend decomposition using LOESS (STL) method to extract trends of climate-related risk variables and economic-financial variables, conducting a two-stage empirical analysis. In the first stage estimation, we found that the delinquency rate and the Bank for International Settlement (BIS) ratio of commercial banks have significant negative effects on the damage caused by natural disasters, frequency of heavy rainfall, average temperature, and number of typhoons. On the other hand, for insurance companies, the damage from natural disasters, frequency of heavy rainfall, frequency of heavy snowfall, and annual average temperature have significant negative effects on return on assets (ROA) and the risk-based capital ratio (RBC). In the second stage estimation, based on the first stage results, we predicted the soundness and operational performance indicators of commercial banks and insurance companies until 2035. According to the forecast results, the delinquency rate of commercial banks is expected to increase steadily until 2035 under assumption that recent years' trend continues until 2035. It indicates that banks' managerial risk can be seriously worsened from climate change. Also the BIS ratio is expected to decrease which also indicates weakening safety buffer against climate risks over time. Additionally, the ROA of insurance companies is expected to decrease, followed by an increase in the RBC, and then a subsequent decrease.

ROBUST ESTIMATION USING QUASI-SCORE ESTIMATING FUNCTIONS FOR NONLINEAR TIME SERIES MODELS

  • Cha, Kyung-Yup;Kim, Sah-Myeong;Lee, Sung-Duck
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.385-399
    • /
    • 2003
  • We first introduce the quasi-score estimating function and applied the quasi-score estimating function to nonlinear time series models. We proposed the M quasi-score estimating functions bounded functions for the quasi-score estimating functions. Also, we investigated the asymptotic properties of quasi-likelihood estimators and M quasi-likelihood estimators. Simulation results show that the M quasi-likelihood estimators work better than the least squares estimators under the heavy-tailed distributions

Initial Risk Assessment System of Pesticides - A case study of captan, paraquat dichloride, and glyphosate - (농약의 초기위해성평가체계에 관한 연구 - Captan, Paraquat dichloride, Glyphosate에 대한 Case study -)

  • Lee, Yong-Ju;Kim, Kyun;Kim, Yong-Hwa
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.214-220
    • /
    • 2005
  • Initial Risk assessments using physicochemical properties and acute toxicity are conducted to provide information for managers to decide the potential adverse effects and played as a tool for decision-making in development of new substances. In this study, we built initial risk assessment framework and carried out human and ecology initial risk assessment for three different pesticides of captan, glyphosate, and paraquat dichloride to confirm our framework. Two water estimation models of GENEEC (GENeric Estimated Environmental Concentration) and FOCUS (FOrum for the Co-ordination of pesticide models and their USe) were employed for pesticides exposure assessment. Application for paraquat dichloride and glyphosate uses shows very low human and ecology risk. On the other hand, high acute ecological risk was observed from the application for captan. These results showed good agreements with the U.S. EPA RED (Reregistration Eligibility Decision) reports verifying the framework of this study.

A Stochastic Simulation Model for Estimating Activity Duration of Super-tall Building Project

  • Minhyuk Jung;Hyun-soo Lea;Moonseo Park;Bogyeong Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.397-402
    • /
    • 2013
  • In super-tall building construction projects, schedule risk factors which vertically change and are not found in the low and middle-rise building construction influence duration of a project by vertical attribute; and it makes hard to estimate activity or overall duration of a construction project. However, the existing duration estimating methods, that are based on quantity and productivity assuming activities of the same work item have the same risk and duration regardless of operation space, are not able to consider the schedule risk factors which change by the altitude of operation space. Therefore, in order to advance accuracy of duration estimation of super-tall building projects, the degree of changes of these risk factors according to altitude should be analyzed and incorporated into a duration estimating method. This research proposes a simulation model using Monte Carlo method for estimating activity duration incorporating schedule risk factors by weather conditions in a super-tall building. The research process is as follows. Firstly, the schedule risk factors in super-tall building are identified through literature and expert reviews, and occurrence of non-working days at high altitude by weather condition is identified as one of the critical schedule risk factors. Secondly, a calculating method of the vertical distributions of the weather factors such as temperature and wind speed is analyzed through literature reviews. Then, a probability distribution of the weather factors is developed using the weather database of the past decade. Thirdly, a simulation model and algorithms for estimating non-working days and duration of each activity is developed using Monte-Carlo method. Finally, sensitivity analysis and a case study are carried out for the validation of the proposed model.

  • PDF

Operational Risk Measurement of Financial Institutions via AHP (AHP 분석을 이용한 금융기관 운영리스크 측정)

  • Choi, Seung-Il
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.73-82
    • /
    • 2011
  • Basel II advanced measurement approaches for operational risk need to estimate the frequency and severity distribution of operational losses. Due to lack of internal loss data, the estimation is impossible in many cases and so external loss data might be used by scaling on asset or gross income. To get around lack of loss data, scenario analysis combined with loss distribution approach can be useful in calculating the capital charge of operational risk. However, scenario based loss distribution approach requires much time and effort. Instead we may apply the analytic hierarchy process to measure operational risk of financial institutions. The analytic hierarchy process combined with loss distribution approach is to estimate the capital charge of operational risk in other areas based on the operational VaR in an area with sufficient loss data. AHP provides a tool for timely measurement of operational risk in this rapidly changing global environment.

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

Comparison Of Interval Estimation For Relative Risk Ratio With Rare Events

  • Kim, Yong Dai;Park, Jin-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.181-187
    • /
    • 2004
  • One of objectives in epidemiologic studies is to detect the amount of change caused by a specific risk factor. Risk ratio is one of the most useful measurements in epidemiology. When we perform the inference for this measurement with rare events, the standard approach based on the normal approximation may fail, in particular when there are no disease cases observed. In this paper, we discuss and evaluate several existing methods for constructing a confidence interval of risk ratio through simulation when the disease of interest is a rare event. The results in this paper provide guidance with how to construct interval estimates for risk difference and risk ratio when there are no disease cases observed.

Establishing the Method of Risk Assessment Analysis for Prevention of Marine Accidents Based on Human Factors: Application to Safe Evacuation System

  • Fukuchi, Nobuyoshi;Shinoda, Takeshi
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.4
    • /
    • pp.19-33
    • /
    • 2000
  • For the prevention of marine accidents based on human factor, the risk assessment analysis procedure is proposed which consists of (1) the structural analysis of marine accident, (2) the estimation of incidence probability based on the Fault Tree analysis, (3) the prediction of ef-fectiveness to reduced the accident risk by suitable countermeasures in the specified functional system, and (4) the risk assessment by means of minimizing of the total cost expectation and the background risk. As a practical example, the risk assessment analysis for preventing is investigated using the proposed method.

  • PDF

A Simple Estimation of Relative Risk

  • Park, Hyo-Il;Hong, Seung-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.317-327
    • /
    • 2007
  • In this paper, we propose a simple estimate of relative risk based on a functional equation. We derive the asymptotic normality with a restricted condition. Then we discuss some interesting features as concluding remarks. Finally we comment briefly about application of the estimate to the testing problems and compare our estimate with that of Begun through simulation study.

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF