• 제목/요약/키워드: Rising velocity

Search Result 161, Processing Time 0.018 seconds

Study on Effect of Convection Current Aeration System on Mixing Characteristics and Water Quality of Reservoir (대류식 순환장치의 저수지수체 유동특성 및 수질영향)

  • Lee, Yo-Sang;Lee, Kwang-Man;Koh, Deok-Koo;Yum, Kyung-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of $7{\sim}10m$ at a surface directly and was irrelevant to the strength of thermocline. On the other hand, it was affected the number of working days, and strength of thermocline at vertical profiles of the reservoir. Longer CCAS run, the deeper was the vertical direct flow area. However it didn't break the thermocline during summer season of 2008. The operating efficiency of the CCAS in the reservoir depends on hydraulics and meteological conditions. Computational Fluid Dynamics (CFD) is a very useful tool for evaluating the operating efficiency of fluid dynamics. The geometry for CFD simulation consists of a cylindrical vessel 25 m radius and 40 m height. The CCAS is located in center of domain. The non-uniform tetrahedral meshes had a bulk of the geometry. The meshes ranged from the coarse to the very fine. This is attributed to the cold water flowing into the downcomer and rising, creating a horizontal flow to the top of the CCAS. The result of CFD demonstrate a closer agreement with surveyed data for temperature and flow velocity. Theoretical dispersion volume were calculated at 8m depth, 120 m diameter working for 30 days and 10 m depth, 130 m diameter working for 50 days.