• Title/Summary/Keyword: Rise Time and Width

Search Result 44, Processing Time 0.033 seconds

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser (펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석)

  • 이성혁;이준식;박승호;최영기
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.

Downtown Area Cadastral Boundary Surveying Using Real-time GPS/GLONASS Combination

  • Seo, Dong-Ju;Kim, Sung-Hwan;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.73-79
    • /
    • 2003
  • To manage national territory and cadastral data efficiently, accuracy and cost-efficiency in cadastral boundary surveying is inevitable. The efficient management of cadastral data is a very important element in national land management. Survey techniques are being introduced. Recently, improvements in survey techniques have been made with the development of satellite surveying, Allowing accurate and fast surveys. If we can calculate the output accurately in real-time in survey fields, it will open a new method in cadastral detail surveying. According to the classification on Law of cadastral surveying, Cadastral surveying can be divided into cadastral control point surveying and cadastral detail surveying. The control point survey can be divided into cadastral triangulation surveying and cadastral traverse surveying. The detailed survey is usually perform by plane surveying. Among these, cadastral detail surveying will be reviewed in this study. In this study, the combination of the satellites, such as US managed GPS and Russian managed GLONASS was used. In the satellite survey in downtown, data interruption symptoms arose(according to the mask angle of the satellite). Therefore; we combined the satellites to get date more accurately. A block of Haewoondae New City in Busan, Korea, which has Numerical Cadastral Law was selected as the sample area for this study. Block II and III are surrounded by high rise apartments. One side of Block I and IV is level ground and the other side is full of high rise apartments. Especially, Block II is surrounded by high rise apartment houses with 20 meters width. In the results of the study Block II did not satisfy the allowable precision, while Block I, II and IV satisfied the allowable precision of the enforcement regulations of Cadastral Law. Therefore, it is judged that the traditionally used Total Station method should be used for supplementary survey on Block II, in stead.

  • PDF

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

the Design Methodology of Minimum-delay CMOS Buffer Circuits (최소 지연시간을 갖는 CMOS buffer 회로의 설계 기법)

  • 강인엽;송민규;이병호;김원찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.509-521
    • /
    • 1988
  • In the designs of integrated circuits, the buffer circuits used for driving a large capacitive load from minimum-structured logic circuit outputs have important effects upon system throughputs. Therefore it is important to optimize the buffer circuits. In this paper, the principle of designing CMOS buffer circuits which have the minimum delay and drive the given capacitive load is discussed. That is, the effects of load capacitance upon rise time, fall time, and delay of the CMOS inverter and the effects of parasitic capacitances are finely analysed to calculate the requested minimum-delay CMOS buffer condition. This is different from the method by C.A. Mead et. al.[2.3.4.]which deals with passive-load-nMOS buffers. Large channel width MOS transistor stages are necessary to drive a large capacitive load. The effects of polysilicon gate resistances of such large stages upon delay are also analysed.And, the area of buffer circuits designed by the proposed method is smaller than that of buffer circuits designed by C.A. Mead's method.

  • PDF

A Pulse Power Supply for Metal Vapor Lasers (금속 증기 레이저용 펄스 전원 장치)

  • Cha Byung Heon;Lee Heung Ho;Jin Jeong Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.190-197
    • /
    • 2005
  • A reliable and compact pulse power supply using a thyratron and a magnetic pulse compression (MPC) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a conventional thyratron-discharge type pulse power supply. A thyratron generated a long pulse of its conduction pulse width 500 ns and then it was compressed to less than 80 ns of its output voltage rise time by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 30 mm inner diameter and 1.5 m discharge length. It was operated several hundreds hours without any troubles.

A High Voltage Pulse Generator Using a Rotatary Airhole Spark Gap Code (회전 공극형 고전압 펄스발생장치)

  • 문재덕;이종훈;이복희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.268-272
    • /
    • 2004
  • A high voltage pulse generator with a rotator airhole spark gap instead of a rotary ball spark gap has been proposed and investigated. Its feasibility as a high voltage pulse generator is compared with the rotary ball spark gap type one. Parametric studies showed that proposed the rotary airhole type spark gap had a very stable breakdown voltage and reliable pulse repetition time compared with the conventional rotary ball type spark gap. This however showed that the proposed pulse generator with a rotary airhole spark gap instead of a rotary ball spark gap could be potentially used as a very stable and reliable pulse generator in the various fields of applications.