• Title/Summary/Keyword: Ripple reduction

Search Result 375, Processing Time 0.024 seconds

Filter Design Method for an Inverter System (인버터 시스템을 위한 필터설계 방법)

  • 오진석
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.63-69
    • /
    • 1997
  • This paper presents a design method for a filter application in a parts-of FA(Factory Automation). Normal equations for ripple voltage and current are derived in terms of dimensionless quantities, and these equations can be used directly to evaluate the values of LC-filter components, taking into consideration the effect of the ripple components on the rms value of the PWM-generated ripple components. Using describing function technique, design equations of the filter are derived. The data needed for the filter evaluation are the amplitude of current ripple and the frequency of square pulses delivered by the HE(Harmonic Elimination) inverter algorithm. Experimental results show that the design of the filter can be based on the method proposed and that the filter can provide a significant reduction of ripple components.

  • PDF

Performance Improvement of B4 Inverters by Adding Compensation Voltage (보상전압 첨가를 통한 B4 인버터 성능향상)

  • Lee, Dong-Myung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a current ripple reduction method to improve the control performance of B4 type inverter that is studied for cost-effective drive systems. B4 inverters employ only four switches and they have a center-tapped connection between the split dc-link capacitors and one phase of a three-phase motor or load. In the B4 topology, unbalanced three-phase voltages will be generated due to the dc-link voltage ripple. To solve this problem, this paper presents a voltage distortion compensation method that adjusts the voltage reference with the consideration of dc-link voltage ripple. The validity of the proposed method is verified by simulation and excremental results with an induction machine.

Reduction of Electromagnetic Torque Ripple in High-Speed, High-Load Brushless DC Motors used for Automobile Parts (자동차 부품용 고속, 고부하 BLDC 모터내의 전자기적 토크 맥동 저감)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • For permanent magnet brushless DC motors used for high speed fuel pumps, torque ripple is an important origin of vibration, acoustic noise and speed fluctuation. In this paper, the output torque profile of a PM motor with one phase energized is decomposed into the commutation torque, the reluctance torque and the armature reaction torque according to their source origins. It verifies that the output torque profile is qualitatively equivalent to the BEMF profile for low reluctance motors. This paper discusses the effect of magnet pole shaping and magnet arc length on the output torque and torque ripple. A magnet edge shaping is proposed to design a trapezoidal BEMF motor without torque ripple, with minimal sacrifice of the maximum output torque.

  • PDF

Torque Ripple Reduction Method of SRM Drives Using Neural Network Technique (신경회로망기법을 이용한 SRM 드라이브의 토오크리플 저감방안)

  • Lee, Seong-Du;Jung, Tae-Uk;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.227-229
    • /
    • 1997
  • The torque of SRM is developed by phase currents and inductance variation. The inductance of torque generation region is nonlinearly varied according to phase current. By this nonlinear characteristics, torque ripple can be generated on the condition of constant current. Otherwise, phase current should be controlled instantaneously in accordance with inductance to reduce torque ripple. In this paper, the control system with neural network that can reduce torque ripple is suggested. In this control system, instantaneous inductance and optimal current waveform for smallest torque ripple is obtained by neural network. And this required optimal current waveform is regulated by voltage control.

  • PDF

New Control Method for the Current Ripple Reduction of 3-phase Interleaved Bidirectional DC-DC Converter (3상 인터리브드 양방향 DC-DC 컨버터의 전류리플을 저감하기 위한 새로운 제어기법)

  • Jung, Jae-Hun;Kim, Jihyun;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.260-266
    • /
    • 2016
  • A new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter is proposed. The converter used in this study operates in discontinuous mode to minimize the switching losses. All the switches are turned on at ZVS and ZCS conditions, and turned off at ZVS condition. The charging and discharging power of the battery is controlled by varying the switching frequency while maintaining the discontinuous mode operation. A 3 kW 20 kHz power converter is designed and implemented. Simulation and experimental results show the validity of the proposed method. The proposed control method can be used to reduce the battery ripple current significantly.

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

Pressure Ripple Reduction in High Speed On-Off Solenoid Valves Driven by PWM Control (PWM 제어 고속 온-오프 전자밸브에서 발생하는 압력맥동 저감)

  • Kim D.T.;Lee S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This paper investigates a fast, accurate and inexpensive hydraulic motor speed control system using high speed on-off solenoid valves. In order to retain the advantages of the two position valve and obtain better performance, the valves are operated by pulse width modulation(PWM) control. PWM signal is generated from a LabWIEW program in microcomputer in order to set up various duty ratio and frequency of carrier wave in PWM signal with varying system parameters. As the results of experiments, the speed control of a hydraulic motor was successfully implemented using on-off solenoid valves. In order to attenuate the pressure ripple and speed variation due to discontinuously controlled flow through the on-off valves, a resonator hose fabricated for automobile power steering system was connected between the valve and a hydraulic motor. From experimental results obtained in the hydraulic motor system with a resonator hose, it was ascertained that the resonator hose showed excellent performances in reducing pressure ripple and motor speed variation.

  • PDF

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

FEA-based Torque Ripple and Noise Reduction of DC Motor for Automotive Air-Conditioning (유한요소 해석 기반 자동차 공조용 DC모터 토크 리플과 소음 저감에 관한 연구)

  • Hwang, Myeonghwan;Kim, Donghyeon;Yang, Seungjin;Cha, Hyunrok;Han, Jongho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1895-1898
    • /
    • 2017
  • This paper discusses methods for the torque ripple and noise reduction of DC motors for automotive air-conditioning based on electromagnetic field analysis. The target of the motor is a blower motor, and to reduce cogging torque and the torque ripple, the optimum model was selected by deforming the brush or commutator shape. In addition, to reduce the cogging torque, the model design was carried out by applying the skew method and the magnetization method of a magnet to the rotor. For optimization, the shape, material, and drive system of the motor were selected using an electromagnetic field as the analysis tool, and the method of reducing the cogging torque was applied to 4-pole, 12- and 13-slot motors considering the mechanical part. Lastly, this paper confirmed thatthemethod, which proposed how much noise, cogging torque, and vibration are reduced, improves through practical analysis.

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.