• Title/Summary/Keyword: Ripple reduction

Search Result 375, Processing Time 0.021 seconds

Torque Ripple Reduction Method in a Sensorless Drive for BLDC Motor (브러시리스 직류전동기용 센서리스 드라이브의 토크 맥동 저감 방법)

  • Lee, Kwang-Woon;Kim, Dae-Kyong;Kim, Tae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1087-1089
    • /
    • 2003
  • This paper presents a method to reduce commutation torque ripple in a sensorless brushless DC motor drive without current sensors. To compensate the commutation torque ripple completely, the duration of commutation must be known. The proposed method measures the duration of commutation from terminal voltage waveforms, calculates a PWM duty ratio to suppress the commutation torque ripple from the output of speed controller, and applies the calculated PWM duty ratio only during the commutation. Experimental results show that vibrations are considerably reduced when the proposed method is applied to the sensorless brushless DC moter drive for air-conditioner compressor.

  • PDF

A New Direct Torque Control Scheme of an Induction Motor Using Duty Ratio Modulation

  • Park, Jeong-Woo;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1223-1231
    • /
    • 2018
  • The direct torque control (DTC) scheme features a simple structure thanks to stator flux-oriented control. It has the advantage of robustness against motor parameters variation since only the stator resistance is involved in the control scheme. On the other hand, the disadvantage of DTC is large torque ripple. To reduce the torque ripple, many studies on DTC-space vector modulation (DTC-SVM) schemes, which modulate the duty ratio with a fixed switching cycle, have been proposed. However, there is the difficulty in obtaining the duty ratio for DTC-SVM. Hence, this paper proposes a new duty ratio selection and stator flux calculation methods for reducing torque ripple. Simulations and experiments were carried out to determine the validity of the proposed method. The proposed scheme has simplified the duty ratio command and achieved the same control performance as the conventional duty ratio modulation method without using the information of motor parameters.

Torque Ripple Reduction in Synchronous Motor Systems Driven by an Inverter (인버터로 구동되는 동기전동기 시스템에서의 토크리플 저감)

  • Won, Euy-Youn;Lee, Dong-Keun;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.247-250
    • /
    • 1995
  • This paper proposes a new method to reduce the torque ripple in vector controlled inverter fed synchronous motor systems. In three phase voltage source inverter systems, all the three line currents are generally not measured and the currents of two lines are measured through two sensors and two A/D converters. The measured currents may contain some error due to the non-ideality of the current sensors and A/D converters, and the error coefficient of two line currents are not same. As a result, the developed torque contains the torque ripple. The proposed method can eliminate the torque ripple by setting the error coefficient to same value. To verify the proposed method, digital simulations are carried out.

  • PDF

Reduction of Torque Ripple in an Axial Flux Generator Using Arc Shaped Trapezoidal Magnets in an Asymmetric Overhang Configuration

  • Ikram, Junaid;Khan, Nasrullah;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.577-585
    • /
    • 2016
  • In this paper, model of the axial-flux permanent magnet synchronous generator (AFPMSG) having arc-shaped trapezoidal permanent magnets (PM) is presented. The proposed model reduces the cogging torque and torque ripple, at the expense of lowering the average output torque. Optimization of the proposed model is performed by considering the asymmetric overhang configuration of the PMs, as to make the output torque of the proposed model competitive with the conventional model. The time stepped 3D finite element analysis (FEA) is performed for the comparative analysis. It is demonstrated that the torque ripple of the optimized model is highly reduced as well as average output torque is increased.

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control (제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감)

  • Lee, Junyong;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this study, the generating of torque regarding the Control Moment Gyro (CMG) is proportional to the angular velocity of gimbal. This is the case because gimbal affects the attitude control of the satellite directly, and it is necessary to reduce the incidence of torque ripple of gimbal. In this paper, the cause of the torque ripple of gimbal is reviewed and mathematically modeled by assuming the friction imbalance of bearing, the magnetic field and the phase current imbalance of the motor. We are able to confidently estimate the modeling parameters of gimbal disturbance using a constant speed test, and then analyze the influence of applying feedforward control to our modeling. Additionally, the simulation results show that the torque ripple and angular velocity fluctuations are reduced when apply this modeling to the identified study parameters. Finally, we present the disturbance reduction technique using our disturbance modeling.

Proportional Resonant Feedforward Contrl Algorithm for Speed Ripple Reduction of 3-phase SPMSM (3상 영구자석 동기전동기의 속도 맥동 저감을 위한 비례공진 전향보상 제어 알고리즘)

  • Lee, Seon-Yeong;Hwang, Seon-Hwan;Kim, Gyung-Yub;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1104-1108
    • /
    • 2020
  • This paper propose a variable proportional resonant feedforward algorithm for reducing the speed ripple of a three-phase permanent magnet synchronous motor. In general, the torque ripples can be generated by electrical pulsation due to current measurement errors and dead time and mechanical pulsation because of rotor eccentricity and eccentric load. These torque pulsations can cause speed pulsations of the motor and degrade the operating performance of the motor drive system. Therefore, in this paper, the factors of the speed ripple is analyzed and an algorithm to reduce the speed ripple is proposed. The proposed algorithm applied a variable proportional resonant controller in order to reduce the specific operating frequency included in the speed pulsation, and utilized a feedforward compensation controller structure to perform the compensation operation. The proposed algorithm is verified through various experiments.

A FAST REDUCTION METHOD OF SURVEY DATA IN RADIO ASTRONOMY

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • We present a fast reduction method of survey data obtained using a single-dish radio telescope. Along with a brief review of classical method, a new method of identification and elimination of negative and positive bad channels are introduced using cloud identification code and several IRAF (Image Reduction and Analysis Facility) tasks relating statistics. Removing of several ripple patterns using Fourier Transform is also discussed. It is found that BACKGROUND task within IRAF is very efficient for fitting and subtraction of base-line with varying functions. Cloud identification method along with the possibility of its application for analysis of cloud structure is described, and future data reduction method is discussed.

  • PDF

A Current Control Strategy for Torque Ripple Reduction on Brushless DC Motor during Commutation (Brushless DC Motor에서 토크리플 저감을 위한 전환 구간에서의 전류제어 기법)

  • 권경준;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents a current control strategy to reduce torque ripple of Brushless DC Motor during con)mutation. The torque ripple is mainly caused by the inequality in the rate of change between rising current and decaying one during commutation. And also it is influenced by the shape of real back EMF Therefore, in the proposed control strategy, considering real back EMF a compensation voltage is generated to equalize the rate of change in these commutating currents. And then, by providing the compensation voltage during commutation, the torque ripple can be reduced. The simulation md experimental results verify that the proposed method can reduce the torque and the current ripples significantly.

Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement (저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.