• 제목/요약/키워드: Ripple control

검색결과 823건 처리시간 0.198초

직접 토크제어에 의한 유도전동기 토크맥동 저감 시스템 (A Torque Ripple Reduction System of Induction Motor with Direct Torque Control)

  • 김남훈;김민호;김민회;김동희;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.276-279
    • /
    • 2001
  • Direct torque control(DTC) is known to produce quick response in ac drives. Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, The DTC quick response are preserved at transient state, while better qualify steady state performance is produced by Space Vector Modulation(SVM). It is able to reduce the acoustical noise, torque ripple and current pulsation during steady state. The system presented are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal. Simulation results for the 2.2kw general purposed induction motor are presented and discussed.

  • PDF

권선계자형 동기전동기의 d축 쇄교자속에 의한 계자전류리플 보상 기법 개발 (Development of Field Current ripple Compensating Method by d-axis Flux-linkage in WRSM)

  • 황대연;구본관
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1165-1173
    • /
    • 2018
  • Recently, owing to environmental problems and instability of rare earth resources market, non-rare earth electric motors are attracting attention. As a non-rare earth motor type, a wound rotor synchronous motor(WRSM) has high power density and wide driving range further it can reduce loss by field current control during field weakening control at high speed. However, since the d-axis flux of the WRSM is coupled with the rotor circuit, the fluctuation in the d-axis flux linkage affects the rotor circuit, which causes ripple of the field current and torque. In this paper, we propose the field current ripple compensation method by injecting the feedforward voltage. the proposed compensating method was demonstrated by simulation and experiments.

자기포화를 고려한 SRM의 토크리플 저감 제어 (Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation)

  • 강준호;김재혁
    • 조명전기설비학회논문지
    • /
    • 제28권7호
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구 (Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF)

  • 이상훈;홍인표;박성준;김철우
    • 전력전자학회논문지
    • /
    • 제7권1호
    • /
    • pp.91-100
    • /
    • 2002
  • 본 논문에서는 매입형 영구자석 동기전동기의 전자기 토크의 맥동저감에 관하여 기술하였다. 일반적으로 토크 맥동은 전동기의 진동과 소음을 유발하는 중요한 원인이 된다. 제안된 방법에서는 비정현적인 역기전력을 가진 IPMSM에서 토크 맥동을 저감하기 위해 단위전류당 최대토크 제어를 할 수 있는 최적의 전류 형상을 고려하여 도출하였다. 그리고 이를 전동기에 인가했을 때 토크 맥동이 개선될 수 있음을 시뮬레이션과 실험을 통해서 입증하였다.

LLC 공진 컨버터의 120Hz 출력전압 리플 저감을 위한 전향보상 방법 (A Feedforward Compensation Method for 120Hz Output Voltage Ripple Reduction of LLC Resonant Converter)

  • 윤종태;이귀준
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.46-52
    • /
    • 2021
  • This study proposes a feedforward compensation control method to reduce 120 Hz output voltage ripple in a single-phase AC/DC rectifier system composed of PFC and LLC resonant converters. The proposed method compensates for the voltage ripple of the DC-link by using the AC input and DC output power difference, and then reduces the final output voltage ripple component of 120 Hz through feedforward compensation based on the linearized frequency gain curve of the LLC resonant converter. Through simulation and experimental results, the validity of the ripple reduction performance was verified by comparing the conventional PI controller and the proposed feedforward compensation method.

인터리브드 PWM 방식의 6상 영구자석 동기전동기 전류 맥동 및 토크 맥동 분석 (Analysis of Phase Current Ripple and Torque Ripple of a 6-Phase PMSM Controlled by Interleaved PWM)

  • 장원진;김성훈;전보성;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.305-315
    • /
    • 2022
  • In this paper, phase current ripples and torque ripples of six-phase PM synchronous motor controlled by interleaved PWM are analyzed. The cause of the increase of phase current ripple in the interleaved PWM was mathematically analyzed based on the mutual inductance of stator windings and effective voltage vector. Simulation and experiment verified that the DQ current ripple and torque ripple can be reduced by interleaved PWM control. The FFT analysis of torque waveform confirmed that the magnitude of harmonic torque corresponding to double the PWM frequency was reduced.

Torque Ripple Minimization Scheme Using Torque Sharing Function Based Fuzzy Logic Control for a Switched Reluctance Motor

  • Ro, Hak-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.118-127
    • /
    • 2015
  • This paper presents an advanced torque ripple minimization method of a switched reluctance motor (SRM) using torque sharing function (TSF). Generally, TSF is applied into the torque control. However, the conventional TSF cannot follow the expected torque well because of the nonlinear characteristics of the SRM. Moreover, the tail current that is generated at a high speed motor drive makes unexpected torque ripples. The proposed method combined TSF with fuzzy logic control (FLC). The advantage of this method is that the torque can be controlled unity at any conditions. In addition, the controller can track the torque under the condition of the wrong TSF. The effectiveness of the proposed algorithm is verified by the simulations and experiments.

새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어 (A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control)

  • 김종수;서동환;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1105-1110
    • /
    • 2011
  • 본 논문은 신경회로망 기법을 이용하여 직접벡터제어 방식의 문제점을 개선하고자 하였다. 직접벡터제어 방식은 히스테리시스 밴드 폭의 변화로 인해 유도전동기 속도제어 시 맥동이 큰 단점을 가지고 있다. 이러한 문제점을 학습을 통해 오차를 감소시키는 신경회로망 기법을 사용하여 기존의 직접벡터제어 방식에서 발생하던 속도 맥동을 개선하였다.

공진제어기와 반복제어기를 사용한 전동기의 주기적인 속도 리플 저감 (Reduction of Periodic Speed Ripple of Electric Machines Using Resonant Controller and Repetitive Controller)

  • 정성민;이정호;최종우
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1434-1446
    • /
    • 2018
  • This paper presents new speed control strategy for periodic load torque injected in AC motor. If motor drive system has a periodic load torque, it causes a periodic motor speed ripple bringing about vibrations and noises. This paper proposed new control method consisting of PIR(proportional-integral-resonant) controller and repetitive controller. PIR controller controls DC, low frequency and fundamental components and repetitive controller controls other harmonics. The performance has been verified through computer simulations using MATLAB Simulink and experiments.

개선된 교차축 연동제어기를 통한 리니어 모터의 비선형 적응제어 (Nonlinear Adaptive Control for A Linear-Motor-Driven Two Axes through A Enhanced Cross-Coupling Algorithm)

  • 한상오;황우현;이상민;허건수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.902-906
    • /
    • 2008
  • The linear motors are easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. For highspeed/high-accuracy position control of a linear-motor-driven two axes, a nonlinear adaptive controller including a cross-coupling algorithm is designed in this paper. The nonlinear effects such as friction and force ripple are estimated and compensated. An enhanced approach for cross-coupling algorithm is proposed to effectively improve the biaxial contour accuracy with the closed-loop stability. The proposed controller is evaluated through the computer simulations.

  • PDF