• Title/Summary/Keyword: Riparian woody buffer

Search Result 2, Processing Time 0.014 seconds

Growth Performance and Adaptability of Three-year-old Poplar and Willow Clones in a Riparian Area (하천연변에서 3년생 포플러 및 버드나무 클론의 생육특성 및 적응능력)

  • Yeo, Jin-Kie;Woo, Kwan-Soo;Koo, Yeong-Bon;Kim, Yeong-Sik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.40-50
    • /
    • 2007
  • One-year-old rooted cuttings of ten poplar clones and one willow clone were planted in a riparian area in Osan. Survival rate, growth performance, biomass, vitality, defoliation, leaf damages by diseases and/or insects and stem borer damage of the poplar and willow clones have been investigated for three growing seasons. Average survival rate of all eleven clones was declined from 80.7% for the first year to 60.7% for the third year. At three years after planting, poplar clones Dorskamp, ST-148 and Eco-28 showed the best survival rate of 80%. For height and DBH growth, the poplar clone Ay-48 and the willow clone 131-25 were the highest 8.3m and 9.5cm, respectively. However, poplar clones 72-30 and 72-31 were lower than those of the other clones. Clones Ay-48 and 131-25 seemed to have strong vitality when compare to the other clones. No serious damages by diseases and insects were found in most clones. Clones Ay-48 and ST-148 were the most tolerant to various diseases and insects. Clone Ay-48 produced the largest biomass for individual and annual total biomass, 22.5kg and 18.7ton $ha^{-1}$, respectively. Clone Dorskamp showed the best adaptability, which was estimated with survival rate, biomass and damages by various diseases and insects in the riparian area and followed by clones Ay-48, 97-19 and Eco-28. As a consequence, the four clones seemed to be the best candidate poplar clones for the establishment of riparian woody buffer.

Nitrogen Storage Potential in Aboveground Biomass of Three-year-old Poplar Clones in a Riparian Area (하천연변에 식재된 3년생 포플러 클론의 지상부 biomass의 질소 저장능력 추정추정)

  • Yeo, Jin-Kie;Lee, Won-Woo;Koo, Yeong-Bon;Woo, Kwan-Soo;Byun, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • We estimated the biomass productivity and the storage potential of nitrogen, the major contributor of non-point source pollution, with four three-year-old four poplar clones in a riparian woody buffer established in the Anseong River in Anseong, Korea. Stem of Populus alba ${\times}$ P. glandulosa clone 72-31 and Populus deltoides ${\times}$ P. nigra clone Dorskamp showed the highest percentage of aboveground biomass components, followed by branch and leaf. Nitrogen content in aboveground biomass components of two poplar clones was the highest in leaf and the lowest in stem. Nitrogen content in leaf and branch of clone 72-31 was higher than that of clone Dorskamp, while it in stem was lower. Populus deltoides clone Ay48 showed the highest above-ground biomass productivity, which was estimated as $37.5ton\;ha^{-1}$ at age 3. However, clone 72-31 was the lowest in above-ground biomass productivity. Nitrogen storage potential in aboveground biomass of 3-year-old poplar clones was high in order of aboveground biomass. Clone Ay48 showed the highest nitrogen storage potential in aboveground biomass, which was estimated as $218.3kg\;ha^{-1}$ at age 3.