• Title/Summary/Keyword: Riparian distance

Search Result 18, Processing Time 0.024 seconds

Studies on the Ecological Management and Stream Environment in Dorim Stream for Establishing Eco-wetland Parks (도림천 수변지역 조성을 위한 생태적 관리방안 및 하천환경 관리방안에 관한 연구)

  • Lee, Sang-Don;Kim, Seok-Chul
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • Urban streams are degrading functional role due to development and pollution. This study chose the representative stream of Do-rim and identified flora and fauna. The ecological survey aimed at identifying indicator of urban streams for measuring urban healthiness and we discussed the possibility of wetland conservation area. From the beginning of Dorim stream to An-yang mixture we were successfully identified 113 species of plants, 9 of mammals, 23 of birds, 4 of amphibians, 2 of reptiles and 2 of fish species. Terrestrial insects were 71 species. The wetland vegetation is quite various and we suggested 4 different vegetation zones (aquatic vegetation zone, emergent zone, riparian-meadow zone, riparian-woodland zone) depending on distance from the flowing water stream and vegetation characteristics for urban stream management.

  • PDF

A Study on the Distribution Patterns of Salix gracilistyla and Phragmites japonica Communities according to Micro-landforms and Substrates of the Stream Corridor (하천 미지형 및 하상저질에 따른 갯버들과 달뿌리풀군락의 분포특성에 관한 연구)

  • 전승훈;현진이;최정권
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.58-68
    • /
    • 1999
  • This study was carried out to verify the distribution patterns of Salix gracilistyla and Phragmites japonica communities known as obligatory riparian species according to physical factors such as micro-landforms, substrates, etc., at Soo-ip stream corridor. Firstly four vegetation types - Salix gracilistyla dominant type, Phragmites japonica dominant type, mixed type of two species, and mixed type of two species to other species, were classified by cluster analysis based on UPGMA-Euclidean distance. Also these vegetation types showed many different distribution patterns in response to the longitudinal and lateral view along the stream corridor and substrate composition. Salix gracilistyla was major component of dominant vegetation types developed at attack point of bending reach and on substrates composed of rock fragments, but contrastly Phragmites japonica was most important component of dominant vegetation types at point bar of bending reach and floodplain, and on substrates composed of soil materials. Secondly the species and environment biplot form CCA strongly supported the vegetation types divided by classification. Namely Salix gracilistyla was closely correlated with rock fragments and steep slope, which is resistant to physical action even though located near running water. But Phragmites japonica showed a high correlation with soil particles sedimented at floodplain by divergent flow.

  • PDF

Geometric Optimization Algorithm for Path Loss Model of Riparian Zone IoT Networks Based on Federated Learning Framework

  • Yu Geng;Tiecheng Song;Qiang Wang;Xiaoqin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1774-1794
    • /
    • 2024
  • In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.

An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta (수변 경계종인 쥐방울덩굴의 유전적 다양성 분석)

  • Nam, Bo Eun;Park, Hyun Jun;Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2020
  • Northern pipevine (Aristolochia contorta) commonly inhabits marginal areas between waterside and terrestrial vegetation. In particular, A. contorta is ecologically important in the marginal areas as a food plant of dragon swallowtail butterfly (Sericinus montela), which is designated as vulnerable species in the Republic of Korea. For long-term sustainability of the plant population, assessment of the genetic diversity of exist populations should be conducted. Genomic DNA of A. contorta leaf samples were extracted from four populations where the vigorous growth were observed in the South Korea. Intra-population genetic diversity and inter-population genetic distance were assessed using randomly amplified polymorphic DNA (RAPD) with five polymorphic random primers. Overall genetic diversity was lower, compared to other wetland species (h: 0.0607 ~ 0.1401; I: 0.0819 ~ 0.1759), while GP showed the highest intra-population genetic diversity. Despite of the geographical distance, GP showed the larger genetic distance from other populations. This result seemed to be caused by the fragmented habitat and lower sexual reproduction of A. controta. Mixture of the different source populations and construction of the proper environmental condition such as shade and physical support for sexual reproduction should be considered for conservation of A. contorta population.

Applicability and Limitations of Groundwater Yield Estimation Equations for Radial Collector Wells (방사형 집수정의 취수량 추정식의 적용성 및 한계점 고찰)

  • Kim, Gyoo-Bum;Lee, Ho-Jeong;Choi, Myoung-Rak
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.443-453
    • /
    • 2018
  • Radial collector wells have been widely used for large-capacity groundwater development in riparian environments, and many empirical equations have been developed for initial estimates of groundwater yield. We compare the initial yield estimates produced by several empirical equations for the radial collector well at the Anseongcheon stream site. The results of Babac's, Kordas', and Petrovic's methods are similar to the actual yield of $6,124m^3/d$, but Milojevic's method predicts a higher yield than the observed value. The conditions under which these methods are applicable explain the observed differences between the actual and estimated yields. The applicability of empirical equations is evaluated by changing the input variables of distance from well to river, number of horizontal wells, thickness of aquifer, length of horizontal well, and hydraulic conductivity. The results indicate that the conditions under which each method is applicable must be considered carefully when estimating groundwater yield, and hydraulic conductivity must be estimated accurately.

Impacts of Seasonal Pumping on Stream Depletion (계절양수가 하천건천화에 미치는 영향)

  • Lee, Hyeonju;Koo, Min-Ho;Lim, Jinsil;Yoo, Byung-Ho;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.61-71
    • /
    • 2016
  • Visual MODFLOW was used for quantifying stream-aquifer interactions caused by seasonal groundwater pumping. A hypothetical conceptual model was assumed to represent a stream-aquifer system commonly found in Korea. The model considered a two-layered aquifer with the upper alluvium and the lower bedrock and a stream showing seasonal water level fluctuations. Our results show that seasonal variation of the stream depletion rate (SDR) as well as the groundwater depletion depends on the stream depletion factor (SDF), which is determined by aquifer parameters and the distance from the pumping well to the stream. For pumping wells with large SDF, groundwater was considerably depleted for a long time of years and the streamflow decreased throughout the whole year. The impacts of return flow were also examined by recalculating SDR with an assumed ratio of immediate irrigation return flow to the stream. Return flow over 50% of pumping rate could increase the streamflow during the period of seasonal pumping. The model also showed that SDR was affected by both the conductance between the aquifer and the stream bed and screen depths of the pumping well. Our results can be used for preliminary assessment of water budget analysis aimed to plan an integrated management of water resources in riparian areas threatened by heavy pumping.

A Study on Riparian Habitats for Amphibians Using Habitat Suitability Model (서식지적합성 모형을 이용한 수변지역 양서류 서식지 분석)

  • Jeong, Seunggyu;Seo, Changwan;Yoon, Jaehyun;Lee, Dong Kun;Park, Jonghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.175-189
    • /
    • 2015
  • The objective of this study was to analyze characteristics of distribution of amphibian species and the affecting ecological factors. For the study, habitat environment factors were determined and applied to a habitat suitability model for the data collected from the Seom River in Hoengseong County and Wonju City, Gangwon Province, Korea between March 2013 to October 2013. The analyzed amphibian species were Rana nigromaculata, Hyla japonica, Rana dybowski, and Rana rugosa Temminck and Schlegel, and a logistic regression model was used with the pseudo-absence data. The result of the model analysis suggests that the major factors for Rana nigromaculata are distance to vegetation and rock and that for Hyla japonica is waterway. Rana dybowski and Rana rugosa Temminck and Schlegel have similar habitat characteristics, but the latter is shown to be dominant due to its wider habitat preference. According to the species richness model, the analyzed amphibian species are shown to have tendency to move between valleys or streams. This study quantitatively analyzed habitat environment characteristics using species distribution model, however, there is a limitation in terms of analysis on food factor and connectivity with other species. Combined with additional density or habitat analysis on birds or fish, this study can lead to more comprehensive analysis on biological environment factors.

Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City (포항시 비오톱의 유형 구분, 속성 분석 및 복원 방안)

  • Jung, Song Hie;Kim, Dong Uk;Lim, Bong Soon;Kim, A Reum;Seol, Jaewon;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.245-265
    • /
    • 2019
  • Biotope, which represents the characteristic habitats of living organisms, need to be identified as essential for the efficient creation and sustainable management of urban ecosystems. This study was carried out to provide the basic information for ecological urban planning by analyzing types and attributes of the biotop established throughout the whole area of the Pohang city, a representative industrial city in Korea. The biotop established in Pohang city is composed of 12 types including forests (coniferous, deciduous, and mixed forests), agricultural fields (rice paddy and upland field), green facilities, river, reservoir, bare ground, residential area, public facilities, commercial area, industrial area, roads, and schools. As a result of analyzing the properties according to biotop types, industrial, commercial and residential areas, which represent urban areas, was dominated by introduced vegetation. Moreover the introduced vegetation is usually composed of exotic plants or modified forms for landscape architecture and horticulture rather than native plants, which reflects ecological property of both region and site. As the distance from the urban center increases, the agricultural field showed a form of typical farmland, whereas the closer it is, the more form of greenhouse farming. Natural green spaces were divided into riparian vegetation established along the stream and forest vegetation. Forest vegetation is consisted of secondary forests (seven communities) and plantations (three communities). The urban landscape of Pohang city is dominated by the industrial area. Among them, the steel industry, which occurs large amounts of heat pollution and carbon dioxide, occupies a large proportion. On the other hand, green space is very insufficient in quantity and inferior in quality. This study proposed several restoration plans and further, a green network, which ties the existing green spaces and the green space to be restored as a strategy to improve the environmental quality in this area.