• Title/Summary/Keyword: Riparian Vegetation

Search Result 175, Processing Time 0.025 seconds

Application of Landscape Ecology to Watershed Management : How can We Restore Ecological Functions in Fragmented landscape\ulcorner (유역관리에서 경관생태학의 응용 : 절개된 경관의 생태적 기능을 어떻게 회복시킬 수 있을까\ulcorner)

  • Nakamura, Futoshi
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • This paper describes the ecological structure and function of riparian zone, and their historical changes with land-use. The riparian zone consists of valley floor landform and riparian vegetation. The functions discussed are attenuation of sunlight energy, input of leaves and needles, contribution of woody debris to streams, and retention of flowing material out of transport. These primary functions directly or indirectly influence water and sediment qualities of streams, bars and floodplains, and thereby aquatic biota. Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversin in order to understand the linkages between these two systems in Toikanbetsu River. The influences of channelization and land-use on discharge of suspended sediment and wetland vegetation was also investigated in Kushiro Marsh. These two examples suggested that the ecological functions of riparian zone have been degraded as flood control and reclamation works have expanded in the past twenty years The author proposes river restoration planning by preserving or creating landscape elements based on the concepts of sustaining physical and ecological linkages.

  • PDF

Experimental analysis of meandering channel development processes with floodplain vegetation (홍수터 식생에 의한 저수로 사행 발달과정 실험적 분석)

  • Jang, Chang-Laea
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.895-903
    • /
    • 2023
  • This study investigates the impact of riparian vegetation in the floodplain on channel stability, changes in bend curvature, and meandering channel migration. In channels with riparian vegetation, over time, meander width remains relatively constant, but selective bank erosion leads to meander development and downstream movement. During this process, bank erosion and changes in the riverbed are not significant, and the channel maintains relatively constant conditions with reduced sediment discharge and minimal variability. As the density of vegetation increases, bank erosion rates decrease. The erosion rates along the riverbanks increase with the density of vegetation on the floodplain, thus affecting the development of meanders. This factor notably contributes to enhancing riverbank stability and influencing channel changes through floodplain vegetation. Bank erosion rates and dimensionless bend curvature are greatest when there is no riparian vegetation but decrease in conditions with vegetation. Furthermore, the relationship between lateral migration rate and dimensionless bend curvature is similar to that of bank erosion rates. Therefore, riparian vegetation enhances channel stability, influencing bank erosion, meander curvature, and meander migration.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Effects of Water Level Change on Wetland Vegetation in the Area of Riparian Forest for Dam Construction Period -Focused on the Hantan River Dam- (댐 건설 기간 수위변화가 하반림 일대 습지 식생에 미치는 영향 -한탄강댐을 사례로-)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.76-84
    • /
    • 2014
  • This study was performed to monitor the effects of water level change on changes of landscape, vegetation community, and species diversity of riparian forest. Hantan river dam, study area, has been constructed in the area of Chansoo-myeon, Pocheon-si and Yeoncheon-eup, Yeoncheon-gun, Gyeonggi-do, which is a dam for flood control only in flooding season. Landscape changes were notable after the construction of coffer dam, and the changes were caused by water level increase in areas of riparian forests which consisted of mainly withered willow as a dominant species in the flooding season. It changed vegetation communities of riparian forest from Phragmites japonica and Salix koreensis to Phragmites japonica. Species diversity index was lowest in 2010 when the coffer dam was constructed and showed an increasing trend later. Thus, this study is well in agreement with a previous report that plants of the genus Salix wither by muddy water during flooding and also suggests, controlling water level of river and prediction of water level change's effects should be considered when any facilities are planned.

A Study on Change of Wild Bird Habitat Characteristics According to Riparian Forest Construction in Yangjae Stream, Seoul (서울 양재천 하천 숲 조성에 의한 야생조류 서식특성 변화 연구)

  • Yun, Suk-Hwan;Han, Bong-Ho;Choi, Jin-Woo;Yun, Ho-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.97-110
    • /
    • 2018
  • The purpose of this study is to provide basic data and evidence for the habitat improvement of wild birds in urban stream by analyzing changes in habitat characteristics of wild birds by riparian forest construction in Yangjae stream in Seoul. In Gangnam-gu, the multi layered riparian forest consisting of landscape trees and shrubs was formed on the slope. In Seocho-gu, the vertical vegetation structure of woody and herbaceous wetland plants was good. In Gangnam-gu, the vegetation area of the slope increased and the vertical stratification structure affected the species diversity of the forest birds. The number of species and individuals of plovers, sandpipers and wagtails decreased due to the impact of bicycle roads and trails. The poor forests on the levee slope in Seocho-gu affected the habitat selection and migration of the forest birds. The willows and amur silver-grasses formed in the riverside have been developed into the riparian forest, thus stabilizing the habitat of water birds by blocking disturbances from the influence of the trails.

The Study of Correlation between Riparian Environment and Vegetation Distribution in Nakdong River (낙동강의 하천환경과 식생분포특성의 상관성 조사연구)

  • Kim, Eun Jin;Cho, Kang Hyun;Kang, Joon Gu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.321-330
    • /
    • 2014
  • This study was performed to investigate relation between riparian vegetation and environmental factor and to predict riparian vegetation succession in Nakdong river, which is typical sand river in Korea Peninsula. We searched 5 natural levee and installed 84 quadrats in Nakdong river near by Andong city. Also, We analyzed flora, vegetation cover degree, topography, soil moisture, organic content, pH, electrical conductivity and soil texture. According to the result of CCA (canonical correspondence analysis), which considered both investigated vegetation data and environmental factor, vegetation were divided down three groups, and each group was difference by height above ordinary water level, organic content and sand. In addition, the most powerful factor was indicated the height above ordinary water level.

Vegetation Structure and Distribution of Exotic Plants with Geomorphology and Disturbance in the Riparian Zone of Seunggi Stream, Incheon (인천 승기천의 하안지대에서 지형과 교란에 따른 외래식물의 분포와 식생 구조)

  • Sin, Dong-Ho;Jo, Gang-Hyeon
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.273-280
    • /
    • 2001
  • We investigated the flora and vegetation structure of exotic plants along stream geomorphology and disturbance factors in the riparian zone of Seunggi stream, Incheon. Total 53 exotic plant species were found in the riparian corridors of Seunggi stream. The percentage of exotics ranged from 25% to 33% of total species richness, and its mean value was 24% in the whole riparian area. The percentage of exotics reflected the vulnerability of riparian zones to plant invasions by disturbances, and it could be used as an indicator of riparian system dysfunction. The distinct distribution patterns of exotic plants did not found in the lateral topographic features of the stream. Invasion and proliferation of the exotic plants were somewhat remarkable at terraces and bank slopes of the stream. Among various disturbance factors, plowing and trampling were important on the invasion of exotic plant species of Seunggi stream.

  • PDF

Riparian Area Characteristics of the Middle and Lower Reaches of the Nakdong River, Korea (낙동강 중·하류 지역의 수변 특성에 관한 연구)

  • Kang, Dae-Seok;Sung, Ki-June;Yeo, Un-Sang;Chung, Yong-Hyun;Lee, Suk-Mo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.189-200
    • /
    • 2008
  • As a transition zone between terrestrial and aquatic ecosystems, riparian areas of rivers and streams play significant roles in production and decomposition for river and stream systems. Understanding of the physical and ecological characteristics of riparian areas are, therefore, important for the management of river and stream systems. It is especially important to understand the characteristics of riparian areas for the Nakdong River in Korea which has a large watershed area and diverse land uses. This study aimed at collecting field data, according to stream types, which are essential for the management of riparian areas of the middle and lower reaches of the Nakdong River, Korea. Most riparian areas surveyed in this study had roads within 100 meters from river edges. Distances from water edge to banks were less than 1m for most riparian areas neighboring agricultural lands, indicating that those areas might be very vulnerable to pollutant inputs from non-point sources. Water quality data indicated that soil erosion in the riparian areas could be a major source of phosphorus input to the Nakdong River and land use patters might have a significant influence on nitrogen concentration in the river. Heavy metal concentrations in soils of the riparian areas of the river were below soil quality standards, except arsenic and chromium. Vegetation surveys showed that therophytes were the most frequently occurred riparian plants in the Nakdong River. Number of aquatic plant species increased downstream, with the most diverse aquatic plants observed in wetlands and irrigation canals of the West Nakdong River. Occurrence rate of naturalized plants and urbanization index were high in the survey sites adjacent to urban and agricultural areas.

Cause-based Categorization of the Riparian Vegetative Recruitment and Corresponding Research Direction (하천식생 이입현상의 원인 별 유형화 및 연구 방향)

  • Woo, Hyoseop;Park, Moonhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.207-211
    • /
    • 2016
  • This study focuses on the categorization of the phenomenon of vegetative recruitment on riparian channels, so called, the phenomenon from "white river" to "green river", and proposes for the corresponding research direction. According to the literature review and research outputs obtained from the authors' previous research performed in Korea within a limited scope, the necessary and sufficient conditions for the recruitment and retrogression of riparian vegetation may be the mechanical disturbance (riverbed tractive stress), soil moisture (groundwater level, topography, composition of riverbed material, precipitation etc.), period of submergence, extreme weather, and nutrient inflow. In this study, two categories, one for the reduction in spring flood due to the change in spring precipitation pattern in unregulated rivers and the other for the increase in nutrient inflow into streams, both of which were partially proved, have been added in the categorization of the vegetative recruitment and retrogression on the riparian channels. In order to scientifically investigate further the phenomenon of the riparian vegetative recruitment and retrogression and develop the working riparian vegetative models, it is necessary to conduct a systematic nationwide survey on the "white to green" rivers, establishment of the categorization of the vegetation recruitment and retrogression based on the proof of those hypotheses and detailed categorization, development of the working mathematical models for the dynamic riparian vegetative recruitment and retrogression, and adaptive management for the river changes.