• Title/Summary/Keyword: Riparian Buffer Width

Search Result 7, Processing Time 0.019 seconds

Efficiency of Riparian Buffer Zone on Removing Sediment Yield Using SWAT Model (SWAT 모형을 이용한 수변완충지대 설정에 따른 토사유출량 저감 효과분석)

  • Choi, Dae-Gyu;Park, Moo-Jong;Kim, Jae-Chul;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.111-118
    • /
    • 2008
  • Riparian buffer zone prevents sediment entry into drainage channels or as a protection from runoff and wind erosion. However, Studies about its removing effect according to Riparian buffer zone are shorted now. In this study, using the SWAT model, Byongseong watershed is built on the Arcview GIS. Using the function of the filter strip in SWAT model, it is also examined about the variation of sediment yield. As a simulation result, the case of constructing riparian buffer zones at subbasins near the outlet shows generally high efficiency on removing sediment yield. In addition, according to the scenario analysis of changing riparian buffer zone width, it is thought that 5-10m riparian buffer zone width is the highest efficiency on removing sediment yields generated from Byeongseong watershed.

Best Buffer Width of Riparian Buffer Zone using a Pilot with Different Plant Species for Reduction of Non-point Pollutant Loading (비점오염저감을 위한 수변완충지대의 적정 설계)

  • Kim, Sung-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Non-point pollution is caused by many diffusive sources, unlike a point pollution derived from industrial wastewater treatment plants or sewage treatment plants. Runoff of non-point pollutants is originated from rainfall or thawing in short period of time moving over and through the a ground surface. They cause ill effect on the quality of neighboring aquatic environment. To prevent effectively the wash off from non-point pollutant, it should be immediately reduced at the source or be treated after gathering of runoff water. This study has been carried out for the best width of riparian buffer zone. So we implemented the experiment in terms of its depth, width and kind of vegetations and calculated the reduction of pollutants loading. The experimental zone encompasses the watershed of Namhan River (Kyunggido Yangpyunggun Byungsanri). The region was divided into 5 land cover sectors : grass, reed, pussy willow, mixed(grass+pussy willow) and natural zone to compare effectiveness of vegetation. Water samples from four points have been collected in different depths. And the pollutant removal efficiency by sectors with different plant species was yielded through influent with one of each sample. And we obtained the correlation between the width of riparian buffer zone and the removal efficiency of pollutants. Using correlation result, the width of riparian buffer zones which needs to improve the water quality of river could be derived.

A Study on Determination of an Optimum Riparian Buffer Zone Based on Analytical Hierarchy Process (계층분석법을 이용한 적정 수변구역 결정에 관한 연구)

  • Han, Haejin;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.555-562
    • /
    • 2004
  • This paper presents the development and application of a riparian buffer zone design model(RBZDM). The model was developed as a decision-making tool for watershed management, by integrating geographic information system(GIS) and analytical hierarchy process(AHP) theory. Several factors for watershed management, such as pollution removal capacity, land aquisition cost, distribution of point and non-point pollution sources, and possibility of new pollution source location, were analyzed based on AHP theory. The vegetated buffer zone width was designed using GIS-based riparian buffer analysis. The developed model was applied to the Kyoungan Stream watershed, which is an important part of Paldang lake catchment area. The Kyoungan stream watershed was divided into sixteen subbasins. Six of them belong to the main stem, where the model was applied. Ten alternatives of buffer zone width and five hierarchial levels were designed. The relative importance and the relative preference were computed by pair-wise comparison of evaluation criteria given in hierarchial levels. The buffer zone width was determined by linear function of the given alternatives and relative preferences. From this study, it was determined that the six buffer zone widths of Kyoungan main stems would be 1,594, 1,744, 1,856, 1,782, 1,338, 1,780 meter, from upstream to downstream.

Analysis of Total Nitrogen Reduction Efficiency with Established Riparian Buffer System using SWAT-REMM Model in Bonggok Watershed (SWAT-REMM 모형을 이용한 봉곡천 유역의 수변림 조성에 따른 총 질소 저감 효율 분석)

  • Ryu, Jichul;Kang, Hyunwoo;Kim, Nam Won;Jang, Won Seok;Lee, Ji Won;Moon, Jong-pil;Lee, Kyu-seung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.910-918
    • /
    • 2010
  • In recent years, riparian buffer system has been known as one of the effective best management practices. However, establishment of riparian buffer system in aspect of plant species and its position in the riparian buffer zone has not been investigated due to lack of efficient evaluation method for the analysis of water quality improvement with established riparian buffer system. To solve this problem, the SWAT-REMM prototype was developed by the researchers in Canada. But, SWAT-REMM model can not consider the $NO_3-N$ load into riparian buffer system through subsurface flow. Thus to solved this problem, Fortran code of SWAT-REMM model was modified. This modified SWAT-REMM system was applied to the Bonggok watershed. Three riparian buffer scenarios, 15 m, 10 m, 5 m width for tree and grass, were made to evaluate the effects of riparian buffer system on water quality improvement. Reduction efficiency of T-N by riparian buffer system of 15 m wide was the greatest (6 ~ 37%, depending on subwatershed characteristics) among 3 scenarios. It indicates that the reduction efficiency of T-N load has increasing-tendency, as buffer width increasing. The results obtained from the analysis showed that wide buffer zones are found to be more effective in reducing non-point pollutant than narrow buffer zones in the riparian buffer zone system. Hence, the SWAT-REMM model could be efficiently used for evaluation and design the most effective riparian buffer systems to reduce pollutant loads to the watershed although many limitations still exist in SWAT-REMM model.

Design of Riparian Areas for the Carbon Sequestration and Diffused Pollutants Control (비점오염저감 및 탄소축적을 고려한 적정 수변지역 설계방법)

  • Kim, Bo-Ra;Sung, Ki-June
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1030-1037
    • /
    • 2010
  • This study suggests the riparian area management measures that can control nonpoint source pollution and optimal carbon sequestration. 30~600 m ranges of riparian buffer width are estimated for controlling diffused pollutants in Nakbon K watershed in the Nakdong River. The area that can be easily restored to the riparian buffer zone considering current land use type is the 1,776.51 ha and it is the 50% of estimated buffer area. About 14,526 tC/yr, 11,826 tC/yr, 8,382 tC/yr and 3,349 tC/yr of carbon can be sequestered in the restoration of riparian buffer zone with broad leaved forest, mixed forest, coniferous forest and perennial grass, respectively. It is equivalent amount of carbon dioxide that emitted from 5,000 cars or 20,000 homes as a family of four.

Riparian Connectivity Assessment Using Species Distribution Model of Fish Assembly (어류군집의 종분포모형을 이용한 수변지역 연결성 평가)

  • Jeong, Seung Gyu;Lee, Dong Kun;Ryu, Ji Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2015
  • River corridors facilitate dispersal and movement and prevent local extinction of species. As a result of stream restoration projects, which include installation of waterfront and flood control structures, the number of animals, which rely on river corridor, is decreasing. For the study, factors affecting fish assembly were extracted by a species distribution model with the fish data collected from the Seom River in Hoengseong County and City of Wonju, Ganwon Province, Korea between March to October 2013. The riparian connectivity was assessed using species richness and rarity. According to result of the field survey, there were 38 species and 7,061 individuals for fish. The analysis suggests the following. Firstly, factors affecting fish richness in species distribution model results are shown to be velocity, riffle, riparian width, and water width. The accuracy of the model proves to be suitable with the correlation coefficient of 0.83 and MAPE of 19.2%. Secondly, the low rarity area is shown to be straight streams in Jeon river near to Hongseong County and the high rarity area to be streams with large width, existing alluvial area at channel junction between Jeon river and Seom river. Thirdly, according to connectivity results, areas where weirs are installed or riparian buffer area is removed showed low connectivity. The areas where farmland near riparian and forest areas showed high connectivity. The results of this study can be utilized to improve current facilities and enhance connectivity as a restoration guide.

A Study on Development of Evaluation Method on Riverine Ecobelt (수변 생태벨트 평가방법 개발에 관한 연구)

  • Cho, Yong-Hyeon;Choi, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • This study aims to develop the diagnostic evaluation method of the riverine ecobelt for construction, conservation, and maintenance of the riverine ecobelt. The value indices in the proposed evaluation method are composed of total 5 fields and 19 elements. The 5 fields are flood control, environmental function, growth of plants, ecobelt function, and restoration potential. Flood control field is composed of total 3 elements such as length, width, and density of green area. Environmental function field is composed of 4 elements such as park use, landscape boundary and edge, microclimate control, non-point pollution control. Growth of plants field is composed of 6 elements such as species composition, forest height, stratum structure, vine plants, plant vitality, and succession of plants. Ecobelt function field is composed of 4 elements such as longitudinal connectivity, lateral connectivity, in-stream forest or habitat, roads on bank top. Restoration potential field is composed of 2 elements such as landform and land use of the immediate vicinity. The score system ranging 1~4 was adopted. The weighting parameters of elements were unified with each other. The final grade system ranging 1~5(1: very good~5: very bad) was adopted, and the final grade was evaluated by the mean values of each field. According to the test application of the diagnostic evaluation method of the riverine ecobelt, the final grades showed effectively the real condition of each site.