Analysis of Total Nitrogen Reduction Efficiency with Established Riparian Buffer System using SWAT-REMM Model in Bonggok Watershed

SWAT-REMM 모형을 이용한 봉곡천 유역의 수변림 조성에 따른 총 질소 저감 효율 분석

  • Ryu, Jichul (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kang, Hyunwoo (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kim, Nam Won (Korea Institute of Construction Technology) ;
  • Jang, Won Seok (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, Ji Won (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Moon, Jong-pil (National Academy of Agricultural Science) ;
  • Lee, Kyu-seung (Bio Environmental Chemistry, Chungnam National University) ;
  • Lim, Kyoung Jae (Department of Regional Infrastructure Engineering, Kangwon National University)
  • 류지철 (강원대학교 지역건설공학과) ;
  • 강현우 (강원대학교 지역건설공학과) ;
  • 김남원 (한국건설기술연구원) ;
  • 장원석 (강원대학교 지역건설공학과) ;
  • 이지원 (강원대학교 지역건설공학과) ;
  • 문종필 (농촌진흥청 국립농업과학원) ;
  • 이규승 (충남대학교 생물환경화학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Received : 2010.06.14
  • Accepted : 2010.09.13
  • Published : 2010.11.30

Abstract

In recent years, riparian buffer system has been known as one of the effective best management practices. However, establishment of riparian buffer system in aspect of plant species and its position in the riparian buffer zone has not been investigated due to lack of efficient evaluation method for the analysis of water quality improvement with established riparian buffer system. To solve this problem, the SWAT-REMM prototype was developed by the researchers in Canada. But, SWAT-REMM model can not consider the $NO_3-N$ load into riparian buffer system through subsurface flow. Thus to solved this problem, Fortran code of SWAT-REMM model was modified. This modified SWAT-REMM system was applied to the Bonggok watershed. Three riparian buffer scenarios, 15 m, 10 m, 5 m width for tree and grass, were made to evaluate the effects of riparian buffer system on water quality improvement. Reduction efficiency of T-N by riparian buffer system of 15 m wide was the greatest (6 ~ 37%, depending on subwatershed characteristics) among 3 scenarios. It indicates that the reduction efficiency of T-N load has increasing-tendency, as buffer width increasing. The results obtained from the analysis showed that wide buffer zones are found to be more effective in reducing non-point pollutant than narrow buffer zones in the riparian buffer zone system. Hence, the SWAT-REMM model could be efficiently used for evaluation and design the most effective riparian buffer systems to reduce pollutant loads to the watershed although many limitations still exist in SWAT-REMM model.

Keywords

References

  1. 국가지리정보시스템 NGIS. (2002). http://www.ngis.go.kr/.
  2. 김기윤(2007). SWAT모형에 의한 밭과 임야에서의 비점오염원 유출특성. 석사학위논문, 한밭대학교.
  3. 송혜원, 이혜원, 최정현, 박석순(2009). 유역관리에 따른 수질개선 효과분석을 위한 HSPF 모델 적용. 대한환경공학회지, 31(5), pp. 358-363.
  4. 윤동민, 박신형, 박재우(2008). 2005년 대한민국 질소 유입 및 유출 수지. 대한환경공학회지, 30(1), pp. 97-105.
  5. 이재용, 장성호, 박진식(2008). 도시 강우시 도시지역의 비점오염원 유출 오염 부하 분석 - 포항시를 중심으로 -. 한국수처리학회지, 16(1), pp. 35-44.
  6. 주진호, 정영상, 양재의, 옥용식, 오상은, 유경렬, 양수찬(2007), 낙동강 수계 고령지 밭의 비점오염 물질 유출 특성 조사 및 단위 유출량 산정. 한국환경농경학회지, 26(3), pp. 233-238.
  7. 환경지리정보서비스 EGIS. (2002). http://egis.me.go.kr/.
  8. Altier, L. S., Lowrance, R., Williams, R. G., Inamdar, S. P., Bosch, D. D., Sheridan. J. M., Hubbard. R. K., and Thomas, D. L. (2002). Riparian Ecosystem Management Model Simulator for Ecological Processes in Ripairan Zone. Report 46, United States Department of Agriculture, Tifton, Georgia.
  9. Arnold, J. G., Srubuvasan, R., Muttiah, R. S., and Wiliams, J. R.(1998). Large area hydrologic modeling and assessment: part I: model development. Journal of American Water Resources Association, 34(1), pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  10. Cerucci, M. and Conmd, J. M. (2003). The use of optimization and hydrologic models to form riparian buffer. J. Am. Water Resour. As., 39(5). pp. 1167- 1180. https://doi.org/10.1111/j.1752-1688.2003.tb03700.x
  11. Dwirc, K. A. and LowrancE, R. R. (2006). Riparian ecosystem and buffcrs -muliscalc slruclurc. function, and management: introduction. J. Am. Water Resour. As., 42(1). pp. 1-4. https://doi.org/10.1111/j.1752-1688.2006.tb03817.x
  12. lnamdar, S. P., SheRidan, J. M., Lowrance, R. P., WiIIiams, R. G.. Bosch, D. D., Aliter, L. S., and Thomas, D. L.,(1999). Riparian Ecosystem Management ModeI(REMM): I. Testing of the hydrology component for a Coastal Plain riparian system. Trasactions of the ASAE, 42(6), pp. 1679-1689.
  13. Jang, W. S., Park, Y., Kim, J., Kim, N., Choi, J., Ok, Y. S., Yang, J. E., and Lim, K. J. (2010). Development of the SWAT DWDM for Accurate Estimation of Soil Erosion from an Agricultural field. Journal of the Korean Society of Agricultural Engineers, 52(1). pp. 79-88. https://doi.org/10.5389/KSAE.2010.52.1.079
  14. Jobin, B., Belanger, L., Boutin, C., and Maisonneuve, C. (2004). Consevation value of agircultural riparian slrips in the Boyer River watershed, Quebec (Canada). Agric. Ecosyst. & Envrion., 103(3), pp. 413-423. https://doi.org/10.1016/j.agee.2003.12.014
  15. Kim, J. G., Park, Y., Yoo, D., Kim, N. W., Engel, B. A., Kim, S. J., Kim, K. S., and Lim, K. J. (2009). Development of a SWAT Patch for Better Estimation of Sediment Yield in Steep Sloping Watersheds. Journal of the American Water Resources Association, 45(4), pp. 963-972. https://doi.org/10.1111/j.1752-1688.2009.00339.x
  16. Liu, Y., Yang, W., and Wang, X. (2007). GIS-based Integratio of SWAT and REMM for Estimating Water Quality Benefits of Riparian Buffer in Agricultural Watersheds. Transactions of the ASAB, 50(5), pp. 1549-1563.
  17. Lowrance, R., Altier, L. S., Wiliams, R. G., lnamdar, S. P., Sheridan, J. M., Bosch, D. D., Hubbard, R, K., and Thomas, D. L. (2000). REMM: The Riparian Ecosystem Management Model. J. Soil & Water Cansrv., 55(1), pp. 27-37.
  18. Lowrance, R. and Sheridan, J. M. (2005). Surface runoff water quality in a managed three zone riparian buffer. J. Environ. Qual., 34, pp. 1851-1859. https://doi.org/10.2134/jeq2004.0291
  19. Ramanarayanan, T. S., Williams, J. R., Dugas, W. A., Hauck, L. M., and McFarland, A. M. S. (1997). Using APEX to identify alternative practices for animal waste management. ASAE lnternational Meeting, Minneapolis, MN. pp. 97-2209.
  20. Tucker, M. A., Thomas, D. L., Bosch, D. D., and Vellidis, G. (2001). GIS-based coupling of GLEAMS and REMM hydorlogy : I. development and sesitivity. Transatcions of the ASAE, 43, pp. 1525-1534.