• Title/Summary/Keyword: Ring test

Search Result 769, Processing Time 0.029 seconds

Cross-Sectional Image Reconstruction of Wooden Member by Considering Variation of Wave Velocities

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.16-23
    • /
    • 2007
  • This study was performed as part of a research project aimed at developing an ultrasonic computed tomography (CT) system of wood for field application. In this reports, we investigate the variation of wave velocities on the cross section of real size wooden structural member to confirm the reason of image distortion on CT image of wood, and then proposed a new image reconstruction method by considering the velocity variation on wood cross section. First of all, the effect of wood anisotropy on ultrasonic velocities of wooden members was investigated. Based on the relationship between ultrasonic velocity and annual ring angle, which was obtained from test results of small clear specimens, ultrasonic velocities of each measuring angle were predicted. Next, they were compared with the ultrasonic velocities measured on five wood disks. There were very large differences between predicted and measured results, thought to be caused by the skewing effect of ultrasound and the presence of juvenile-wood. Based on these findings, a new method was proposed to reconstruct cross-sectional image of wood. By using this method, some distortions on reconstructed images could be removed, and defects were more easily and clearly detected. The minimum size of detectable defect was decreased remarkably, from 33 mm to 13 mm. However, the size of the detected defect was enlarged and the position somewhat shifted to the specimen surface on the CT images, which was also thought to be caused by the skewing effect of ultrasound. Additional research has been planned to solve these problems.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

The Customer Premise Platform for Processing Multimedia Data on the ATM network (ATM망의 멀티미디어 데이터 처리를 위한 가입자단 플랫폼)

  • Kim Yunhong;Son Yoonsik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.89-96
    • /
    • 2005
  • In this paper, we propose a customer premise platform for processing multimedia data service on the ATM network. The proposed platform has a specific AAL2 processor that includes AAL2 protocol and scheduler algorithm so as to off-load large potion of burden from host processor and make it easy to process multimedia data from the ATM network in real time compared with conventional platform in which AAL/ATM tasks are processed by software. The ATS scheduler that is implemented based on 2-level time slot ring provides a simple and efficient method for scheduling data of VBR-rt, UBR and CBR traffics. TMS320C5402 DSP is used to process voice-related tasks such as voice compression and voice packet manupulation and AAL2 processor is implemented on $0.35\;{\mu}m$ process line. We implemented the customer premise equipment for VoDSL service and tested the proposed platform on a test bed network. The experimental results show that the proposed equipment has the call success rate of $97\%$ at least and provides voice service of toll-qualify.

Effects of Additives on the Friction and Wear Properties of PTFE Composites (PTFE 복합재료의 마찰 . 마모 특성에 미치는 첨가제의 영향)

  • 김용직;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.88-94
    • /
    • 1999
  • Recently, PTFE-polyimide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. The friction and wear test was carried out for the different composition ratio under the atmosphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. Notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20%-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s because adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI 80%. PI 100% showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

An Experimental Study on Forming an Axi-Symmetric Dome Type Closed-Die Forging Product Using Modeling Material(I) (모델링재료를 이용한 축대칭형 돔형상의 폐쇄단조 성형 연구 (I))

  • 이근안;임용택;이종수;홍성석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2082-2089
    • /
    • 1992
  • An experimental study on forging an axi-symmetric dome type of AISI4130 was carried out using modeling material. In order to verify the validity of the experimental data, a similarity study between plasticine and AISI4130 has been made. Friction conditions were characterized by ring test for the various lubricants. For the closed-die forging experiments of an axi-symmetric dome type of AISI4130 using the plasticine, various cylindrical billets with different aspect ratios were forged and different flash width to thickness(W/T) ratios were used in order to determine the optimum forging conditions. As W/T ratios decrease forging loads decrease while excess volumes increase. It was found out that the experimental results reproduce the similiar results available in the literature. As a result of these experiments, it was construed physical modeling is an excellent tool for forging process simulation at a practical level.

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Silicon Substrate Coupling Modeling, Analysis, and Substrate Parameter Extraction Method for RF Circuit Design (RF 회로 설계를 위한 실리콘 기판 커플링 모델링, 해석 및 기판 파라미터 추출)

  • Jin, Woo-Jin;Eo, Yung-Seon;Shim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.49-57
    • /
    • 2001
  • In this paper, equivalent circuit model and novel model parameter extraction method of a silicon(Si) substrate are presented. Substrate coupling through Si-substrate is quantitatively investigated by analyzing equivalent circuit with operating frequency and characteristic frequencies (i.e., pole and zero frequency) of a system. For the experimental verification of the equivalent circuit and parameter extraction method, test patterns are designed and fabricated in standard CMOS technology with various isolation distances, substrate resistivity, and guard-ring structures. Then, these are measured in l00MHz-20GHz frequency range by using vector network analyzer. It is shown that the equivalent-circuit-based HSPICE simulation results using extracted parameters have excellent agreement with the experimental results. Thus, the proposed equivalent circuit and parameter extraction methodology can be usefully employed in mixed-signal circuit design and verification of a circuit performance.

  • PDF

Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

  • Bae, Eun-Joo;Park, Hee-Jin;Park, Jun-Su;Yoon, Je-Yong;Kim, Young-Hun;Choi, Kyung-Hee;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.613-619
    • /
    • 2011
  • Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

Field Probe Sensor Based on the Electro-Optic Effect (전기광학효과를 이용한 전계 프로브 센서)

  • Kyoung, Un-Hwan;Kim, Gun-Duk;Eo, Yun-Seong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.71-75
    • /
    • 2009
  • A compact electric field probe sensor incorporating two different electro-optic materials of $LiNbO_3$ and GaAs was proposed and fabricated, and it was used to measure the strength of the horizontal and vertical fields generated by a microstrip ring-resonator filter. The sensitivities of the sensors in $LiNbO_3$ and GaAs were $9.315{\mu}V/\sqrt{Hz}$ and ${\sim}49.346{\mu}V/\sqrt{Hz}$ respectively, and their signal to noise ratios were approximately ${\sim}50\;dB$ and ${\sim}40\;dB$ respectively. And the operating frequency range was up to ${\sim}1.2\;GHz$. The electric field profile for the test circuit was scanned and found to be in good agreement with that obtained by using the HFSS simulation.