• Title/Summary/Keyword: Ring design

Search Result 1,125, Processing Time 0.026 seconds

Structural Behavior Analysis of Cap Shaped as an Arch for Suction-Installed Cofferdam (아치형 석션 가물막이 상판의 구조거동 분석)

  • Kim, Jeongsoo;Jeong, Youn-Ju;Park, Min-Su;Song, Sunghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.391-399
    • /
    • 2020
  • In this study, the behaviors of a suction cap shaped as an arch were analyzed using finite element models. The fundamental structural behaviors of both flat- and arch-type caps were compared, and the advantages of the arch-shaped cap were explained. Moreover, the effects of geometric parameters and stiffener arrangements on the stress and deformation of the arch-shaped caps were investigated by comparisons of the changes in the behaviors of the caps. Additionally, the effects of boundary condition at the edge of the cap were analyzed to study the interactions between the cap and cofferdam walls; these results were used to derive the fundamental structural design of stiffened arch caps. Unlike flat caps, the results showed that ring stiffeners could improve the structural behaviors of arch caps remarkably, while the contributions of the radial stiffeners to the structural behaviors of the caps are dependent on constraints at the edges of the caps.

A Risk Assessment Method using Disaster Influence Factors on Construction Project (건설 프로젝트의 재해영향요인 기반 위험성 평가방법)

  • Yu, Yong-Sin;Choi, Jae-Wook;Kim, Tae-Wan;Lee, Chansik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.3-12
    • /
    • 2019
  • Current risk assessment methods typically determine accident risks embedded in construction projects by combining severity and frequency; however, they do not reflect the characteristics of construction projects. To solve the problem, this study aims to develop a novel risk assessment method that combines severity, frequency, and disaster influence factors (i.e., weather conditions and worker's characteristics) for assessing risks of activities occurring on a construction site actually. In this study, a severity was estimated by death against victims, and a frequency was estimated by the victim rate. The frequency was then converted to probability taking disaster influence factors into account. Thus, instead of considering severity and frequency for assessing the original risks (RO), the proposed method uses severity and probability to yield adjusted risks (RA) for each activity. A case study was conducted to determine if the proposed method works as intended in a real setting. The results show that RA is more sensitive to disaster influence factors than RO and, therefore, is able to assess the actual risks reflecting the working environment and conditions of a construction site. This study contributes to risk management of construction projects by offering a risk assessment method that measures a possibility of potential disasters from the probabilistic perspective. This method would help project managers assess accident risks in a more systematic and quantitative manner.

Privacy-preserving and Communication-efficient Convolutional Neural Network Prediction Framework in Mobile Cloud Computing

  • Bai, Yanan;Feng, Yong;Wu, Wenyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4345-4363
    • /
    • 2021
  • Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.

A Study on the Production of Supporting Ring Using Casting for Public Environmental Vehicles (대중적 환경차를 위한 주조를 이용한 서포트링 제작에 관한 연구)

  • Jeongick Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2023
  • I am designing a research paper with the aim of studying hybrid vehicles. Hybrid vehicles, as the next-generation automobiles, feature a combination of internal combustion engines and battery engines, resulting in a revolutionary reduction in fuel consumption and harmful gas emissions compared to conventional vehicles. The electric motor in hybrid cars derives power from a high-voltage battery installed within the vehicle, which is recharged during vehicle motion. In contrast to traditional cars, which often experience energy losses due to idling caused by traffic congestion, hybrid systems optimize efficiency by skillfully managing the interplay between the internal combustion engine and the electric motor. This approach effectively addresses the inherent drawbacks of gasoline or diesel engines.Hybrid cars offer an array of benefits, including improved fuel efficiency, environmental friendliness, cost-effectiveness, and reduced noise emission. Consequently, they are progressively becoming a favored alternative among a growing number of individuals. This research endeavor has the potential to contribute towards curbing environmental pollution and dedicating efforts to future automotive research.

Effect of Curing Temperature and Autofrettage Pressure on a Type 3 Cryogenic Propellant Tank (경화온도와 자긴 압력이 Type 3 극저온 추진제 탱크에 미치는 영향 연구)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.31-38
    • /
    • 2006
  • In this study, effects of curing temperature and autofrettage pressure on a Type 3 cryogenic propellant tank, which is composed of composite hoop/helical layers and a metal liner, were investigated by thermo elastic analysis and composite/aluminum ring specimen tests. Temperature field of a Type 3 tank was obtained from solving the heat transfer problem and, in turn, was used as nodal temperature boundary conditions during the elastic analyses for curing temperature and autofrettage pressure effects. As a result, it was shown that the higher curing temperature was, the more residual compressive stress and tensile stress were induced in composites and metal liner, respectively. On the contrary, autofrettage pressure brought the reduction of these residual thermal stresses caused by cryogenic environments to the tank structure. This tradeoff for curing temperature and autofrettage pressure must be considered in the design and manufacturing stages for a Type 3 cryogenic tank.

Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors

  • Paudel, Suresh;Wang, Shuji;Kim, Eunae;Kundu, Dooti;Min, Xiao;Shin, Chan Young;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.191-202
    • /
    • 2022
  • Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

Crystal-less clock synthesizer with automatic clock compensation for BLE smart tag applications (자동 클럭 보정 기능을 갖춘 크리스털리스 클럭 합성기 설계 )

  • Jihun Kim;Ho-won Kim;Kang-yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2024
  • This paper presents a crystal-less reference clock recovery (CR) frequency synthesizer with compensation designed for Bluetooth Low Energy (BLE) Smart-tag applications, operating at frequencies of 32, 72, and 80MHz. In contrast to conventional frequency synthesizers, the proposed design eliminates the need for external components. Using a single-ended antenna to receive a minimal input power of -36dBm at a 2.4GHz signal, the CR synthesizes frequencies by processing the RF signal received through a Low Noise Amplifier ( L N A ) . This approach allows the system to generate a reference clock without relying on a crystal. The received signal is amplified by the LNA and then input to a 16-bit ACC (Automatic Clock Compensation) circuit. The ACC compares the frequency of the received signal with the oscillator output signal, using the synthesis of a 32MHz reference clock through a frequency compensation method. The oscillator is constructed using a Ring Oscillator (RO) with a Frequency Divider, offering three different frequencies (32/72/80MHz) for various system components. The proposed frequency synthesizer is implemented using a 55-nm CMOS process.

Optical Design of an Inspection Apparatus for Dynamic Visual Acuity (동체시력 검사기의 광학계 설계)

  • Lee, Dong-Hee;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.473-480
    • /
    • 2004
  • Recently, they are interested in the relation between night's vehicle accidents of drivers and the dynamic visual acuity at home and aboard. So, in this research, we tried to design an optical system of the inspection equipment to measure the dynamic visual acuity. A optotype standard did to Landolt's ring with 45mm of diameter and 9mm of gap to maintain the visual acuity of 1.0 in the 30m distance. An optical structure of the inspection equipment was composed of the sequence of an observer, a plus refraction lens system, a minus refraction lens system, and an optotype that was arranged to have characteristics that the size of the first virtual image of the optotype made by the minus refraction lens system grows bigger gradually according to the optotype movement to near distance from far distance, and also the first virtual image moves to the principle plane from the focal point of the plus refraction lens system as the size of the first virtual image arranged to the inside of focal distance of plus refraction lens system grows bigger gradually. As doing these processes, we completed the optical system of which characteristic is that the position of the final second virtual image moves to 3m from 50m as the size of the second virtual image made by the plus refraction lens system maintains to be regular.

  • PDF

A Study on a Planar Array Antenna Design with a Flat-Topped Radiation Pattern (구형 방사 패턴을 갖는 평면 배열 안테나 설계에 대한 연구)

  • Eom Soon-Young;Pyo Cheol-Sig;Jeon Soon-Ick;Kim Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.896-905
    • /
    • 2004
  • In this paper, the design, fabrication and experiment on a planar array antenna with a flat-topped radiation pattern for a mobile base station antenna were described. The current distribution of an antenna aperture, which is easily realizable in a feeding network compared with the conventional one of sin(x)/x was optimized for shaping a desired flat-topped radiation pattern. The planar array antenna designed in this paper has a rectangular lattice and is composed of array elements of 16${\times}$8. Each radiating element, which is a microstrip element fed coaxially, has a linear vertical polarization and the feed network which use a Wilkinson power divider and a 180$^{\circ}$ ring hybrid coupler as a base element is designed. The flat-topped radiation pattern with 90$^{\circ}$ is shaped by 16 array elements with the element spacing of 0.55 λ$_{ο}$ in the azimuth plane, and the normal radiation pattern with 10$^{\circ}$ is shaped by 8 array elements with the element spacing of 0.65 λ$_{ο}$ in the elevation plane. Also, the planar array antenna is symmetrically divided into four parts. It consists of one hundred-twenty-eight radiating elements, thirty-two 1-4 column dividers, low 1-8 row dividers and one 1-4 input power divider. In order to verify electrical performances of the planar way antenna proposed in this paper, the experimental breadboard operated in tile band of 1.92~2.17 GHz(IMT2000 band) was fabricated, and its experimental results were a good agreement with simulation ones.