• 제목/요약/키워드: Rigidity analysis

검색결과 574건 처리시간 0.023초

버스 윈도우 필라 부재의 형상 최적 설계기술 개발 (Development of Optimum Design Technique for Bus Window Pillar Member)

  • 김명한;김대성;임석현;서명원;배동호
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.156-164
    • /
    • 1999
  • The body structure of a bus is generally assembled by using various spot welded box sectional members. The shape of window pillar joint is ordinarily built up by T-type member. It has been shown that T-type member has problems like high stress concentrations, low fatigue strength and low structural rigidity. In this study, to solve these problems a new approach to optimize the design of the bus window pillar joint was tried by FEM analysis and experiments. To describe the shape of the gusset connecting the vertical and horizontal members of the T-type window pillar joint B-spline curve was adopted and this curve was optimized . It was found that the new model developed could effectively improve fatigue durability an structural rigidity.

  • PDF

단면이 원형경계를 갖는 실린더 축의 비틀림 해석 (The Torsion Analysis of a Cylindrical Bar with the Cross-Section Bounded by Circles)

  • 김윤영;오경민
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2322-2330
    • /
    • 1994
  • The torsion problem in a cylindrical rod is usually formulated in terms of either the warping function or the Prandtl stress function. In a rod whose cross-section is bounded by circles and rectangles, we develop an analytic solution approach based on the warping function, which satisfies Laplace's equation. The present formulation employs polynomials and The Fourier series-type solutions, both of which satisfy exactly the governing differential equation. Using the present method, the maximum shear stress and torsional rigidity are efficiently and accurately calculated and the present results are compared with those by other methods. The specific numerical examples include the case with eccentric holes which was investigated earlier. The finite element results are also compared with the present results.

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

경상용차용 타이어의 진동특성 (Vibration Characteristics of Tires for Light Truck)

  • 김용우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.102-108
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than their corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quite low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System

  • Canbulut, Fazil;Sinanoglu, Cem;Yildirim, Sahin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.432-442
    • /
    • 2004
  • This paper presents a neural network predictor for analysing rigidity variations of hydrostatic bearing system. The designed neural network has feedforward structure with three layers. The layers are input layer, hidden layer and output layer. Two main parameter could be considered for hydrostatic bearing system. These parameters are the size of bearing pocket and the orifice dimension. Due to importancy of these parameters, it is necessary to analyse with a suitable optimisation method such as neural network. As depicted from the results, the proposed neural predictor exactly follows experimental desired results.

문형식 표지판 지지대의 모멘트 분포와 변형에 대한 해석 및 안정성 분석

  • 임형태;김소형;박성현
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.251-256
    • /
    • 2015
  • In this paper, an systematic approach is presented, in which the bridge-type traffic sign structure is body out by CSDDA PrePost Processor. There is dead load and wind load that is working on the structure which will make force and moment. Analyzied the stress distribution of the standard form and by changing the shape, compared the safety in terms of deflection and stress (with the standard form) to know the effect of each component in the bridge-type traffic sign structure. The safety of deflection and stress is evaluated by maximum distance/100) and ASIC code respectively. The standard form of bridge-type traffic sign structure is established by two pairs of pillar and two pairs of floor beam. Replaced the links which is consist of flange and screws as the torsion spring and nm our analysis program. By adjusting variable of rigidity modulus of torsion spring, moment between column and beam is controled depending on value of rigidity modulus.

  • PDF

The effect of architectural form on the earthquake behavior of symmetric RC frame systems

  • Inan, Tugba;Korkmaz, Koray;Cagatay, Ismail H.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.271-290
    • /
    • 2014
  • In this study, structural irregularities in plan, which has a considerable effect on earthquake behavior of buildings, have been investigated in detail based on Turkish Earthquake Code 2007. The study consists of six main parametric models and a total of 144 sub-models that are grouped based on RC structural systems such as frame, frame + rigid core, frame with shear wall, and frame with shear wall + rigid core. All models are designed to have both symmetrical plan geometry and regular rigidity distribution. Changes in the earthquake behavior of buildings were evaluated according to the number of storeys, number of axes and the configuration of structural elements. Many findings are obtained and assessed as a result of the analysis for each structural irregularity. The study shows that structural irregularities can be observed in completely symmetric buildings in terms of plan geometry and rigidity distribution.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

Theoretical and experimental research of external prestressed timber beams in variable moisture conditions

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.191-209
    • /
    • 2015
  • Hybrid girders can be constructed in different geometrical forms and from different materials. Selection of beam's effective constellation represents a complex process considering the variations of geometrical parameters, changes of built in material characteristics and their mutual relations, which has important effect on the behavior of the girder. This paper presents the theoretical and experimental research on behavior of the timber-steel hybrid girders' different geometrical constellation with external prestressing and in different conditions of timber moisture. These researches are based on linear elastic analysis, and further refine by using the plasticity and damage models.