• Title/Summary/Keyword: Rigid-plastic model

Search Result 144, Processing Time 0.026 seconds

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

Rigid-Body-Spring Network with Visco-plastic Damage Model for Simulating Rate Dependent Fracture of RC Beams (Rigid-Body-Spring Network를 이용한 RC 보의 속도 의존적 파괴 시뮬레이션)

  • Lim, Yun-Mook;Kim, Kun-Hwi;Ok, Su-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.265-268
    • /
    • 2011
  • 하중 속도에 따른 콘크리트 재료의 역학적 특성은 구조물의 동적파괴거동에 영향을 미친다. 본 연구는, rigid-body-spring network를 이용하여 파괴해석을 수행하고, 거시적 시뮬레이션에서 속도효과를 표현하기 위하여 점소성 파괴모델을 적용하였다. 보정을 위해서 Perzyna 구성관계식의 점소성 계수들이 다양한 하중속도에 따른 직접인장실험을 통해서 결정되었다. 동정상승계수를 이용하여 하중 속도가 증가함에 따른 강도 증가를 표현하였고 이를 실험결과와 비교하였다. 다음으로 느린 하중속도와 빠른 하중속도에 따라 단순 콘크리트 보와 철근 콘크리트 보에 대한 휨 실험을 수행하였으며, 하중 속도에 따라서 서로 다른 균열 패턴을 관찰할 수 있었다. 빠른 하중은 보의 파괴가 국부적으로 나타나게 만드는데, 이는 속도 의존적 재료의 특성 때문이다. 구조적인 측면에서, 보강재는 느린 하중속도에서 균열의 크기를 줄이고 연성을 높이는 데 큰 영향을 미친다. 본 논문은 속도 의존적 거동에 대한 이해와 동적하중에 대한 보강효과를 제시한다.

  • PDF

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

Effect of strain-rate on deformation behavior of semi-solid material (반용융 재료의 변형거동에 대한 변형률 속도의 영향)

  • 황재호;고대철;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.777-781
    • /
    • 1997
  • In this study, the effect of strain-rate and inital solid fraction on the deformation behaviour of semi-solid material is investigated, when semi-solid forging is performed by the process of closed-die compression using A356 alloy of which the above results can be practically applied for industrical purpose. In order to simulate densification in the deformation of semi-solid material, the semi-solid material is assumed to be composed of solid region following rigid visco-plastic material, the liquid region following Darcy's law for the liquid flow saturated in the interstitial space. Simulation results of closed-die compression and simple upsetting under different strain-rate and initial solid fraction are compared.

  • PDF

Forming Process Design of Fuel Injector Housing by Response Surface Method (반응표면분석법을 이용한 연료분사하우징의 성형공정설계)

  • Park K. H.;Yeo H. T.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.311-314
    • /
    • 2004
  • The housing of the fuel injector supports the rod, the niddle valve and the solenoid. Based on the procedure of process design, in this paper, the forming operation is designed by the rigid-plastic finite element method. The metal flow during the forming of the fuel injector housing is axisymmetric until the final forming process. The response surface method has been performed to reduce the under-fill and the maximum effective strain. From the results of RSM, the second order regression model of equation is calculated by the least square method and used to determine the optimal values of design variables by simultaneously considering the responses. It is noted that upper under-fill is affected by the design variables of the $2^{nd}$ forming process and lower under-fill is affected by the design variables of the 1st forming process.

  • PDF

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Contact control of a probing manipulator contacting with plastically deformable objects (소성변형가능한 물체와 접촉하는 프로브 매니퓰레이터의 접촉제어)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.221-224
    • /
    • 1996
  • Since impact phenomenon is highly nonlinear, the analysis and control of the contact motion has been a challenging subject. Various researches have been carried out mostly for the contact of a rigid robotic manipulator with a stiff and elastic environment. This paper is motivated by a new contact task: the in-circuit test of a printed circuit board. In this process, high speed contact occurs between a rigid probing manipulator and a plastically deformable work environment. A new dynamic model of the impact controlled probing task has been proposed, considering contact with the plastically deformable object. Approaching velocity conditions to avoid an excess of the allowable penetration depth and control the generated impact force properly are derived from the proposed model. The results of the simulation studies are made for various probing conditions and show the validity of the proposed model.

  • PDF