• Title/Summary/Keyword: Rigid-Viscoplastic

Search Result 70, Processing Time 0.022 seconds

Analysis of Microstructures in a Forged Ti-6Al-4V Disk (Ti-6Al-4V 단조 디스크의 미세조직 분석)

  • 김대영;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.202-209
    • /
    • 1997
  • The mechanical properties of Ti-6Al-4V greatly vary for changes of microstructures. Therefore, when manufacturing components with this material, it is important to understand the influence of process parameters to the resulting microstructures. In the present investgation, it was attempted to relate the process parameters with the microstructures in a hot forged Ti-6Al-4V disk. The investigation was carried out by a rigid thermo-viscoplastic FEM analysis, flow stress measurements and microstructure studies. It was found that the dynamic recrystallization would hardly occur in this material and that variations of strain, strain rate and temperature of several locations in the disk were below the assumed dynamic recrystallization zone. These findings confirmed the experimental obervations that the microstructures in the disk were only deformed without being recrystallized.

  • PDF

A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine (선박 중형엔진용 일체형 Crankshaft 단조장치에 관한 연구)

  • 박승희;윤성만;신상엽;박래원;박종국;이응기;김대두
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.237-244
    • /
    • 1999
  • The purpose of this research is for the development of a new type forging equipment. H.C.G.(Hyundai Continuous Grain-Flow), by using two virtual build-up tools, rigid viscoplastic FEM and downsized plasticine experiment. This forging method consists of only vertical pressuree. Therefore, high quality crankshafts can be forged with this method as it can maintain a continuous grain flow. The factors considered in the development of equipment are die geometry for flawless deformed shape, die reaction forces, stress/strain distributions and continuous material flow. We carried out several numerical simulations and downsized plasticine experiments for the proper design of the forging equipment. The validity of those simulation results is confirmed by checking with the actual test results. Based on these simulation results, the proper design of the H.C.G. forging equipment is enabled.

  • PDF

Finite Element Analysis of r Deformation Behavior of Materials at Semi-Solid State (반용융상태에서 재료의 변형거동에 관한 유한요소해석)

  • 윤종훈;김낙수;김헌영;김중재;임용택
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.319-328
    • /
    • 1997
  • A flow stress involving strain, solid fraction, and breakage ratio, and solid fraction updating algorithm were proposed to depict the deformation behavior of materials at the semi-solid state. In case of isothermally simple upsetting of Sn-15%Pb alloy at the semi-solid state, by comparing the results of finite element analysis with the existing experimental results, the reliability of both the developed flow stress and updating algorithm were investigated. It was found that the verified program can effectively be used in the rigid-viscoplastic finite element analysis of the semi-solid forging processes.

  • PDF

An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel (6061 알루미늄합금 휠 단조공정의 해석)

  • 김영훈;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

Design of automotive inner panel by sectional forming analysis (단면성형 해석에 의한 자동차 내부 판넬의 설계)

  • 금영탁;왕노만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Finite Element Analysis of a Piercing and Trimming Process Having a Spring-Attached Die in Hot Former Forging (열간포머 단조공정중 스프링부착 금형을 가진 피어싱과 트리밍 동시공정의 유한요소해석)

  • 문호근;정재헌;전만수
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • In this paper, the rigid-viscoplastic finite element method is employed together with an iteratively force-balancing method to analyze a piercing and trimming process with a spring-attached die in hot former forging. An actual piercing and trimming process with a spring-attached die is investigated in detail and a generalized analysis model is proposed. A multi-stage hot former forging process is simulated under various spring constants. The analyzed results are discussed in order to investigate the effects of spring constants on the metal flow lines and the formed shapes. Then an optimal piercing and trimming process in hot former forging is devised.

Optimal Design of Dimension of Extrusion Die with Multi Stress Rings (다중보강링을 갖는 압출금형의 치수최적설계)

  • An, Sung-Chan;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.

Development and application of FEM/GEM program for evaluating formability of stamping dies (스탬핑 금형의 성형성 평가를 위한 유한요소/기하학힘평형법 프로그램 개발과 응용)

  • Kim, J.P.;Keum, Y.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.80-93
    • /
    • 1996
  • A 2-dimensional FEM/GEM program was developed under the plane strain assumption using linear line elements for analyzing stretch/draw forming operations of an arbitrarily shaped draw-die. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. Also, a rigid-viscoplastic material model with Hill's normal anisotropic yield condition and rate-sensitive hardening law is assumed, along with the Coulomb friction law in the contact regions. For the case of numerical divergence at nearly final forming stages, geometric force equilibrium method(GEM) is also introduced. The developed program was tested by simulating the forming processes of cylindrical punch/open die, and the drawing processes of automotive oilpan and hood inner panel in order to verify the usefulness and validity of FEM/GEM formulation. The numerical simulation verified the validity and robustness of developed program.

  • PDF