• Title/Summary/Keyword: Rigid-Plastic FE-analysis

Search Result 23, Processing Time 0.021 seconds

A Study on the Deformation Measurement of Backward Extrusion Dies using Strain Gauge (스트레인 게이지를 이용한 후방압출금형의 변형측정에 관한 연구)

  • Yeo, Hong-Tae;Song, Yo-Sun;Choi, Young;Heo, Kwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.713-716
    • /
    • 2002
  • The dimensional accuracy of the cold forged products is strongly dependent on the elastic behavior of the die. The elastic deformation of the die is continuously changed during the process. Therefore, it is needed to measure the deformation of die. Strain gauges are used to measure the elastic strains in the die during cold backward extrusion process. The strain gauges are attached on the die surface and embedded at the interface between the die insert and the stress ring. In order to compare the results with the FE-analysis, the rigid-plastic FE-analysis of cold backward extrusion process using DEFORM-3D has been performed, and the analysis of elastic deformation of the die has been done by using ANSYS with non-linear contact.

  • PDF

Determining the effective width of composite beams with precast hollowcore slabs

  • El-Lobody, Ehab;Lam, Dennis
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.295-313
    • /
    • 2005
  • This paper evaluates the effective width of composite steel beams with precast hollowcore slabs numerically using the finite element method. A parametric study, carried out on 27 beams with different steel cross sections, hollowcore unit depths and spans, is presented. The effective width of the slab is predicted for both the elastic and plastic ranges. 8-node three-dimensional solid elements are used to model the composite beam components. The material non-linearity of all the components is taken into consideration. The non-linear load-slip characteristics of the headed shear stud connectors are included in the analysis. The moment-deflection behaviour of the composite beams, the ultimate moment capacity and the modes of failure are also presented. Finally, the ultimate moment capacity of the beams evaluated using the present FE analysis was compared with the results calculated using the rigid - plastic method.

Hot Forging Design for a Large Scale Compressor Wheel (대형 압축기 휠의 열간단조 공정설계)

  • 임정숙;염종택;김현규;박노광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

FE Analysis of the Forming Process of an Axle-Housing (Axle-Housing 성형공정의 유한요소해석)

  • Park, Chul;Choi, Ho-Joon;Hwang, Beong-Bok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.48-56
    • /
    • 1995
  • A manufacturing process for the axle-housing is analyzed by the rigid-plastic finite element method. The process contains five stages for the final product. During the simulation, remeshings are done four times due to severe mesh distributions. FE Analysis is performed mainly for strain distributions and load-stroke relationships. Those results are to be an useful design criteria for designing a new process sequence in future.

  • PDF

FE analysis of Al sheet metal considering planar anisotropy (평면이방성을 고려한 알루미늄 판재의 유한요소해석)

  • 윤정환;양동열;송인섭;정관수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.44-54
    • /
    • 1994
  • A variational formulation and the associated finite elemet equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by BARLAT et al [13]. By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes are considered efficiently. In order to check the validity of present formulation, a cylindrical cup and a square cup deep drawing test was modeled. good agreement was found between the FE simulation and the experiment. The results have shown that the present formulation for planar anisotropic deformation can be efficiently applied to the analysis of sheet metal working processes for planar anisotropic nonferrous metals.

  • PDF

Stress Analysis of the Prestressed Dies by Using FEM (유한요소법을 이용한 예압된 금형의 응력해석)

  • Yeo, Hong-Tae;Choi, Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 1999
  • By using the FEM, a method for the stress analysis of the presented dies has been proposed. In this method, FEM and Lame equation are used for the analysis of the die insert and the stress ring, respectively. The proposed method includes the calculation of the contact pressure between the die insert and the stress ring. To show the validity, the proposed method has been applied to the simple test problem. The results of the stress analysis have been compared with the results of ANSYS, a commercial FE-code. Cold extrusion has been simulated by using the rigid-plastic FEM and the results of the deformation analysis have been used as the input of the die structure analysis. The stress states of the prestressed extrusion die have been obtained. The stress analysis of the die insert with stress rings has also been performed during extrusion.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain Element (유한요소법의 입자요소를 이용한 박판 성형해석)

  • 구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.439-442
    • /
    • 2003
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

New J Testing Method Using Load-COD Curve for Circumferential Through-Wall Cracked Pipes under Bending (하중-균열열림변위를 이용한 굽힘하중이 작용하는 원주방향 관통균열 배관의 새로운 J 실험법)

  • Huh Nam-Su;Kim Yun-Jae;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.60-65
    • /
    • 2006
  • The present paper provides experimental J estimation equation for the circumferential through-wall cracked pipe under four-point bending, based on the load-crack opening displacement (COD) record. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic ${\eta}$-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element (FE) analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks, whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

A Study on the Helicopter Composite Blade Impact Loads (헬리콥터 복합재 블레이드 충돌하중 연구)

  • Lee, Hyun-Cheol;Jeon, Boo-Il;Moon, Jang-Soo;Yee, Seok-June
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • The objective of this study is ensuring safety of cabin when the blade impacts into a obstacle by verifying safety of the rotor mast and the transmission using impact loads calculated from the simulation. The rotor mast shall not fail and the transmission shall not be displaced into occupiable space when the main rotor composite blade impact into a 8 inch rigid cylinder in diameter on the outer 10% of the blade at operational rotor speed. To calculate the reaction loads at the spherical bearing and lead-lag damper, blade impact analysis was performed with FE model consist of composite blade, tree(or rigid cylinder) using elastic-plastic with damage material and several contact surfaces which were created to describe a progress of actual failure. Also, the reaction loads were investigated in change of blade rotation speed and pitch angle.