• Title/Summary/Keyword: Rigid wall

Search Result 287, Processing Time 0.03 seconds

Nonlinearly Distributed Active Earth Pressure on a Translating Rigid Retaining Wall : II. Application (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : II. 적용성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.191-199
    • /
    • 2003
  • It is known that the distribution of the active earth pressure against a rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the farmer paper, a new formulation was proposed for the nonlinear distribution of active earth pressure on a translating rigid retaining wall considering arching effects. In this paper, parametric study is performed to investigate the effect of ${\phi}, {\delta}$ and wall height on the magnitude and distribution of active earth pressure calculated from the proposed equations. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the lateral active earth force on the translating wall. Simplified design charts are also proposed for the modified active earth pressure coefficient and fur the height of application of the lateral active force in order to facilitate the use of the proposed equation.

The Effects of Wall Elasticity on Wall Shear Rate of a Divergent Tube (Vascular Graft) (벽 탄성도가 확장관(인조혈관) 벽 전단변형률에 미치는 영향)

  • Rhee, Kye-Han;Lee, Sang-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.912-921
    • /
    • 1999
  • Shear stress acting on the arterial wall by blood flow is an important hemodynamic factor influencing blocking of blood vessel by thickening of an arterial wall. In order to study the effects of wall elasticity on the wall shear rate distribution in an artery-divergent graft anastomosis, a rigid and a elastic model are manufactured. These models are placed in a pulsatile flow loop, which can generate the desired flow waveform. Flow visualization method using a photochromic dye is used to measure the wall shear rate distribution. The accuracy of measuring technique is verified by comparing the measured wall shear rate in the straight portion of a model with the theoretical solution. Measured wall shear rates depend on the wall elasticity and flow waveform. The mean and maximum shear rate in the elastic model are lower than those in rigid model, and the decreases are more significant near the end of a divergent tube. The reduction of mean and maximum of wall shear rate in an elastic model are up to 17 percent.

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Study of a Variable Single-tracked Crawler for Overcoming Obstacles (가변형 단일 궤도를 이용한 장애물 극복방법에 관한 연구)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • In our paper, we propose an asymmetric single-tracked wheel system, and describe its structure and the method for maintaining the length of a transformable track system. And the method is reducing the gap of lengths. Therefore, we propose an efficient structure for transforming and explain motions with kinematics. Our transformable shape single-tracked mobile system has an advantage to overcome an obstacle or stairs by the variable arms in the single unity track system. But we will make the variable shape of tracked system get a drive that has a force to stand against a wall. In this case, we can consider this system to a rigid body and have a notice that this single tracked system is able to get vary shape with the variable arm angle. Considering forces balance along x-axis and y-axis, and moments balance around the center of the mass we have. If this rigid body is standing against a wall and doesn't put in motion, the force of flat ground and the rigid body sets an equal by a friction. In the same way, the force of a wall and the rigid sets an equal by a friction.

Improvement and Evaluation of Structural performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame under Load Reversals (반복하중을 받는 철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 구조성능 평가 및 개선)

  • 신종학;하기주;김광연;이희종;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.541-546
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation of and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-l~3), cumulated energy dissipation capacities wear increased by 1.35~l.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Dynamic analysis of water storage tank with rigid block at bottom

  • Adhikary, Ranjan;Mandal, Kalyan Kumar
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.57-77
    • /
    • 2018
  • The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.