• Title/Summary/Keyword: Rigid vegetation

Search Result 11, Processing Time 0.029 seconds

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

Characteristics of Wave Attenuation with Coastal Wetland Vegetation (연안 습지식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • As a transition region between ocean and land, coastal wetlands are significant ecosystems that maintain water quality, provide natural habitat for a variety of species, and slow down erosion. The energy of coastal waves and storm surges are reduced by vegetation cover, which also helps to maintain wetlands through increased sediment deposition. Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection and modeling coastal hydrodynamics. In this study, laboratory experiments were used to quantify wave attenuation as a function of vegetation type as well as wave conditions. Wave attenuation characteristics were investigated under regular waves for rigid model vegetation. Laboratory hydraulic test and numerical analysis were conducted to investigate regular wave attenuation through emergent vegetation with wave steepness ak and relative water depth kh. The normalized wave attenuation was analyzed to the decay equation of Dalrymple et al.(1984) to determine the vegetation transmission coefficients, damping factor and drag coefficients. It was found that drag coefficient was better correlated to Keulegan-Carpenter number than Reynolds number and that the damping increased as wave steepness increased.

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

Hydraulic Application of Grass Concrete In River Environment (하천환경에서의 그라스콘크리트의 적용성 연구)

  • Jang, Suk-Hwan;Nam, Yong-Hyuk;Kim, Seo-Young;Park, Seong-Beom;Park, Ung-Seo;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.472-477
    • /
    • 2006
  • This study aims at investigating the failure cases of the pre-cast block system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river slope or levee which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, it survived the 8 m/sec maximum flow velocity. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Noise Attenuation by Vegetation (식생에 의한 소음감쇄 효과)

  • 박달곤;김용식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 1995
  • The effects of noise attenuation among bare land, grassland, dominated broad-leaved (Quercus acutissima Carruth) and dominated coniferous forest (Pignus rigid Mill.) were studied For this study, the field experiment was carried out at playground, orchard grass, and school forest in Yeungnam University, Kyongsan. Sound levels of 500, 630, 800, 1,000, 1,250, 1,600, 2,000, 2,500 and 3,150 Hz, respectively, were projected into the vegetation, and the transmitted levels of sound were recorded at the distances of 1, 5, 10, 20, 30 and 50m, respectively, from the sound source. Both dominated coniferous forest (Pignus riged Mill.) and broad-leaved forest (Quercus acutissima Carruth ) are the more effective than grassland in the rates of attenuation. It is expected that dominated coniferous forest will be the more effective to attenuate sound love교 than dominated broad-leaved forest. In the low frequencies such as 500 and 630 Hz, grassland showed the more effective to attenuate sound levels than forests, while in the high frequency such as 3,150 Hz, the forests are the more effective to attenuate sound levels than grassland The present results suggested that it is the more effective to establish the tree belt for a sound barrier, with dominated coniferous tree species in the upper layer and herbaceous vegetation in the lower layer.

  • PDF

Experimental Study of Flow Resistance and Flow Characteristics over Flexible Vegetated Open Channel (개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰)

  • Yeo, Hong Koo;Park, Moonhyeong;Kang, Joon Gu;Kim, Taewook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.61-74
    • /
    • 2004
  • Hydraulic engineers and scientists working on river restoration recognize the need for a deeper understanding of natural streams as a complex and dynamic system, which involves not only abiotic elements(flow, sediments) but also biotic components. From this point of view, the role played by riverine vegetation dynamics and flow conditions becomes essential. Hydro-mechanic interaction between flow and flexible plants covering a river bed is studied in this paper and some previous works are discussed. Measurements of turbulence and flow resistance in vegetated open channel were performed using rigid and flexible tube. Measuring detailed turbulent velocity profiles within and above submerged and flexible stems allowed to distinguish different turbulent regimes. Some interesting relationships were obtained between the velocity field and the deflected height of the plants, such as a reduced drag coefficient in the flexible stems. Turbulent intensities and Reynolds stresses were measured showing two different regions : above and inside the vegetation domain. In flexible vegetated open channel, the maximum values of turbulent intensities and Reynolds stresses appear above the top of canopy. Method to predict a flow resistance in flexible vegetated open channel is developed by modifying an analytical model proposed by Klopstra et al. (1997). Calculated velocity profiles and roughness values correspond well with flume experiments. These confirm the applicability of the presented model for open channel with flexible vegetation. The new method will be verified in the real vegetated conditions in the near future. After these verifications, the new method should be applied for nature rehabilitation projects such as river restorations.

Development and Application of Depth-integrated 2-D Numerical Model for the Simulation of Hydraulic Characteristics in Vegetated Open-Channels (식생 수로에서의 수리특성 모의를 위한 수심적분 2차원 수치모형의 개발 및 적용)

  • Kim, Tae Beom;Bae, Hea Deuk;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.607-615
    • /
    • 2010
  • Vegetation drag tends to raise water level by retarding the flow. Previous studies have focussed on either the vertical structure modeling or the one-dimensional modeling, which can hardly be used to simulate the vegetative streams in practical engineering. Therefore, this paper presents a two-dimensional numerical model based on the depth-averaged flow equations. Vegetation drags are reflected in the flow equations, assuming non-flexible rigid cylinders. For validations, flow properties measured in both rectangular and compound channels are compared with simulated data, showing good agreement. Then, the model is applied to a reach in the Han River and the impact of floodplain vegetation on the flow is investigated.

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Vegetation Structure of Mountain Ridge from Songchu to Dobong in the Bukhansan National Park, Korea (북한산국립공원 도봉산 송추-도봉 구간의 능선부 식생구조)

  • Um, Tae-Won;Kim, Gab-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • To investigate the vegetation structure of the mountain ridges ranging from Songchu to Dobong, this research set up 22 plots$(400m^2)$ as survey target areas. As a result of the analysis of woody plant cluster, it was classified as two groups-Quercus mongolica community and Quercus mongolica-Pinus densiflora community. Quercus mongolica was found as a mostly dominant woody plant species in the ridge areas from Songchu to Dobong, while Pinus densiflora, Quercus serrata and Quercus acutissima were mixed up partly in low altitudes. High negative correlations were shown between Quercus mongolica and Quercus serrata, Quercus serrata and Acer pseudosieboldianum, Pinus densiflora and Acer pseudosieboldianum, and relatively high positive correlations were found to exist between Quercus acutissima and Quercus serrata; Quercus mongolica and Rhododendron mucronulatum; Pinus rigid a and Rhododendron schlippenbachii; Sorbus alnifolia and Rhododendron mucronulatum; Pinus rigida and Pinus densiflora; Pinus densiflora and Robinia pseudoacacia; Acer pseudosieboldianum and Styrax obassia; Magnolia sieboldii and Symplocos chinensis. Species diversity index(H') by community at the surveyed areas stayed in the scope of $0.997\sim1.160$, which indexes showed nothing different from the vegetation structure of other national parks.

Vegetation Structure of Mountain Ridge from Bukhansansung to Insubong in the Bukhansan National Park, Korea (북한산국립공원 북한산성-인수봉 지역의 산림군집구조)

  • Choo, Gab-Cheul;Um, Tae-Won;Kim, Gab-Tae;Park, Sam-Bong;An, Hyo-Hyeon;Kim, Nam-Ho;Kim, Hee-Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.98-105
    • /
    • 2008
  • To investigate the vegetation structure of the region from Bukhansanseong to Insubong in Bukhansan National park, 16 plost$(2500m^2)$ set up with random sampling method were surveyed. Three groups Quercus mongolica-Mixed Broad leaved community, Pinus densiflora-Quercus mongolica community, Quercus mongolica community was classified (or communities were classified) by cluster analysis. Quercus mongolica were found as a major woody plant species in Bukhansan National park region. High positive correlation were proved between Quercus mongolica and Rhododendron; Quercus mongolica and Rhus tricocarpa; Rhododendron mucronulatum and Rhododendron schlippenbachi; Symplocos chinensis and Rhododendron schlippenbachii; Acer pseudosieboldianum and Magnolia sieboldii, and relatively high negative correlation was proved between Fraxinus rhynchophylla and Rhododendron mucronulatum; Juniperus rigid a and Acer pseudosieboldianum; Styrax obassia and Acer pseudosieboldianum. Species diversity(H') of investigated groups were ranged from $1.236\sim1.319$ and it was relatively high compared to those of the ridge area of other national parks.