• 제목/요약/키워드: Rigid brace

검색결과 12건 처리시간 0.023초

스파인코 보조기의 척추 측만증에 대한 효과 고찰 (Review of Flexible brace(SpineCor Brace) in Pubmed, CNKI and Journal of Korean Oriental Medicine ; RCTs(Randomized controlled trials) Review)

  • 김성태;나은지;권민구;황춘호;김민성;박진우;성인형;조희근;설재욱
    • 척추신경추나의학회지
    • /
    • 제10권1호
    • /
    • pp.35-45
    • /
    • 2015
  • Objectives : To evaluate the clinical effectiveness of Flexible brace(SpineCor Brace). Methods : CNKI, PubMed databases and Korean Journal of Oriental Medicine in 1999-2014 were searched for studies on SpineCor. This study researched 4 randomized controlled trial studies. Results : The results suggested that the SpineCor brace reduced the probability of the progression of early idiopathic scoliosis comparing with its natural history or rigid brace. But some studies showed that there is no significant difference between SpineCor and rigid brace. Conclusions : These results indicate that SpineCor have obvious effects on treatment of scoliosis and no adverse reactions, therefore we need to study more researches on SpineCor.

전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능 (Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System)

  • 정희산;문병욱;박지훈;이성경;민경원;변지석
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과 (Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System)

  • 이강석
    • 콘크리트학회논문집
    • /
    • 제25권6호
    • /
    • pp.667-674
    • /
    • 2013
  • 기존 강재 브레이싱 내진보강법은 정착부의 안정성 문제와 브레이싱의 국부좌굴이 발생할 문제가 있으며, 이를 방지하기 위한 추가보강으로 인해 불필요한 자중증가 등으로 경제적인 내진보강성능 확보에 어려움이 있다. 이 연구에서는 지진피해를 받은 건물에 지진피해로 인한 기존 기둥의 연성확보를 위해서 유리섬유시트(glass fiber sheet)로 래핑을 함과 동시에 기존 철골 X-브레이싱 내진보강법에 비교해서 경량의 고강도 재료로 보강 후 추가적인 중량증가가 거의 없으며, 브레이싱 압축 좌굴거동에 자유로운 탄소섬유 앵커 X-브레이싱공법(carbon fiber X-brace)을 조합한 경제적이며 효과적인 새로운 내진보강법(GFS-CFXB)을 제안하였다. 이 연구에서 제안한 GFS-CFXB공법의 유용성을 검증할 목적으로 지진피해를 받은 골조를 대상으로 반복가력에 의한 구조실험을 실시하여 내진성능 및 내진보강 효과를 검증하였다.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Minimally Invasive Repair of Pectus Carinatum in Patients Unsuited to Bracing Therapy

  • Suh, Jee-Won;Joo, Seok;Lee, Geun Dong;Haam, Seok Jin;Lee, Sungsoo
    • Journal of Chest Surgery
    • /
    • 제49권2호
    • /
    • pp.92-98
    • /
    • 2016
  • Background: We used an Abramson technique for minimally invasive repair of pectus carinatum in patients who preferred surgery to brace therapy, had been unsuccessfully treated via brace therapy, or were unsuitable for brace therapy because of a rigid chest wall. Methods: Between July 2011 and May 2015, 16 patients with pectus carinatum underwent minimally invasive surgery. Results: The mean age of the patients was $24.35{\pm}13.20years$ (range, 14-57 years), and all patients were male. The percentage of excellent aesthetic results, as rated by the patients, was 37.5%, and the percentage of good results was 56.25%. The preoperative and postoperative Haller Index values were $2.01{\pm}0.19$ (range, 1.60-2.31), and $2.22{\pm}0.19$ (range, 1.87-2.50), respectively (p-value=0.01), and the median hospital stay was $7.09{\pm}2.91days$ (range, 5-15 days). Only one patient experienced postoperative complications. Conclusion: Minimally invasive repair is effective for the treatment of pectus carinatum, even in adult patients.

Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper

  • Pachideh, Ghasem;Gholhaki, Majid;Kafi, Mohammadali
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.197-211
    • /
    • 2020
  • Application of the steel ring as a type of seismic fuse has been one of the efforts made by researchers in recent years aiming to enhance the ductility of the bracing systems which in turn, possesses various advantages and disadvantages. Accordingly, to alleviate these disadvantages, an innovative bracing system with a diamond scheme equipped with a steel ring is introduced in this paper. In this system, the braces and yielding circular damper act in parallel whose main functionality is to increase ductility, energy absorption and mitigate drawbacks of the existing bracing systems, in which the braces and yielding circular damper act in parallel. To conduct the experimental tests, specimens with three types of rigid, semi-rigid and pinned connections were built and subjected to cyclic loading so that their performance could be analyzed. Promisingly, the results indicate both great applicability and efficiency of the proposed system in energy absorption and ductility. Moreover, it was concluded that as the braces and damper are in parallel, the use of a steel ring with smaller size and thickness would result in higher energy absorption and load-resisting capacity when compared to the other existing systems. Finally, to assess the potential of numerically modeling the proposed system, its finite element model was simulated by ABAQUS software and observed that there is a great agreement between the numerical and experimental results.

Local joint flexibility equations for Y-T and K-type tubular joints

  • Asgarian, Behrouz;Mokarram, Vahid;Alanjari, Pejman
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.151-167
    • /
    • 2014
  • It is common that analyses of offshore platforms being carried out with the assumption of rigid tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms considering local joint flexibility leads to more accurate results. This paper presents an extensive finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas are obtained by non-linear regression analyses on the database. The proposed equations are verified against existing analytical and experimental formulations. The equations can be used reliably in global analyses of offshore structures to account for the LJF effects on overall behavior of the structure.

축방향 인장력을 받는 더블 앵글 접합부의 단순모형에 관한 연구 (A Study on Simplified Model of Double Angle Connections Subjected to Axial Loads)

  • 홍갑표;양재근;이수권;송병주
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.75-82
    • /
    • 2000
  • 현재 접합부에 대한 연구가 활발하게 이루어지고 있다. 구조물의 설계에서는 접합부를 강접합 또는 핀접합으로 가정하여 설계를 하고 있으나, 실제 접합부의 거동은 완전한 강접합도 핀접합도 아닌 반강접의 특성을 보이고 있다. 본 연구에서는 이러한 반강접의 분야 중 더블앵글에 의한 접합부의 거동을 파악하고자 한다. 중 저층 건물에서 가새의 지지능력을 상실하거나, 갑작스럽게 발생할지 모르는 축방향 인장력에 대한 더블앵글의 거동을 상용유한요소해석 프로그램인 ABAQUS를 이용하여 3D 비선형 해석을 수행하였다. 3D 해석결과를 이용하여 더블앵글 접합부를 단순화한 앵글모델로 유도한 후 앵글의 코너에서의 회전강성을 찾아내어 더블앵글 접합부에 대한 설계 기초자료로 제시하였다.

  • PDF

거셋플레이트 연결부가 가새골조의 내진 성능에 미치는 영향 (Influence of Gusset Plate Connection on Seismic Performance of Braced Frame)

  • 정아연;유정한
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.87-94
    • /
    • 2021
  • The purpose of this paper is to improve the inappropriate analysis results when the end of the brace on braced frame is applied as pinned connection in practice. The stiffness of the gusset plate connection on the braced frame has the amount of between pinned and rigid connection, and the analysis model that applies the stiffness of the connection must be used for accurate performance evaluation. In this study, the stiffness of the gusset plate designed by the balanced design procedure are quantified, and applied to the analysis model to simulate the gusset plate connection. The proposed model was verified through nonlinear static analysis (pushover analysis) of SAP2000. The effect of the connection on the seismic performance of the braced frame was analyzed by comparing the proposed model and pinned model. As a result, it was confirmed that the performance of the braced frame was evaluated conservatively in practice, and the ductility was overestimated. Therefore, it is important to consider the connection for accurate and economical performance evaluation.

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.